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Abstract. Active Learning Method (ALM) is a powerful fuzzy soft computing tool, developed originally in order to promote 

an engineering realization of human brain. This algorithm, as a macro-level brain imitation, has been inspired by some beha-

vioral specifications of human brain and active learning ability. ALM is an adaptive recursive fuzzy learning algorithm, in 

which a complex Multi Input, Multi Output system can be represented as a fuzzy combination of several Single-Input, Single-

Output systems. SISO systems as associative layer of algorithm capture partial spatial knowledge of sample data space, and 

enable a granular knowledge resolution tuning mechanism through the learning process. The knowledge in each sub-system 

and its effectiveness in the whole system would be extracted by Ink Drop Spread in brief IDS operator and consolidated using 

a Fuzzy Rule Base (FRB), in order to acquire expert knowledge. In this paper we investigate ALM as a conspicuous classifier 

in different types of classification problems. Also, a new ALM architecture to actively analyze ill-balanced image patterns is 

proposed. Different types of data sets are used as a benchmark, including a remote sensing image classification problem, to 

evaluate the ALM Classifier (ALMC). With active pattern generation ability and knowledge resolution tuning, ALMC has 

been distinguished from many conventional classification tools especially for complex structures and image patterns analysis. 

This work demonstrates that ALMC is a good noise robust and active classifier, which is adaptively adjusted through structural 

evolution and pattern evaluation mechanism. These remarkable capabilities, along with its straightforward learning process, 

make ALMC as a convenient soft computing tool to use in different types of low dimensional pattern recognition problems.  
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1.  Introduction 

The brain machine is often studied trough research 

themes with different disciplines in order to exploit 

human intelligence. The human brain has always 

been studied in two major levels of abstraction, mi-

cro-level and macro-level. The micro-level studies 

started from neurophysiological findings of interac-

tions among different types of neurons in vivo and 

correspondingly led to connectionism paradigms, 

such as ANNs in Artificial Intelligence. Macro-Level 

brain studies, on the other hand, are originated from 

psychological researches with the objective to under-

stand behavioral features of human-environment inte-

ractions. Symbolism in AI, in which human-like in-

telligent machine models surrounding phenomena by 

creating formal symbols and try to acquire know-

ledge by manipulating these qualitative objects, aris-

es from this viewpoint of brain studies. Rule-based 

systems such as Expert System and FRB are good 

examples of this paradigm [1].  

Despite many debates, today’s main secrecies of 

brain machine have been dramatically uncovered in 

micro-level and macro-level attitudes. One of the 

specific abilities of human brain is analysis of visual, 

auditorial and odor sensory patterns. This informa-

tion is captured and conveyed by nervous signals and 

analyzed for perception and recognition process. 

Human brain often tries to categorize its sensory ex-

periences and explore to find their association, and 
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not just use a supervisory teacher. It is not exaggera-

tive to address active learning as one of the most im-

portant characteristic of human learning; the active 

cycle of the learning consists of the evaluation of 

input patterns in accordance with environmental 

feedback and stored prior knowledge, and strengthen-

ing (rewarding) the most valuable patterns and elimi-

nating destructive patterns (penalty). This cycle of 

learning is conducted in absence of a supervisor us-

ing trial and error. From a different point of view, 

this learning mechanism acts like a reinforcement 

learning in which the human is the actor and the crit-

ic at same time.      

ALM is a macro-level realization of brain with a 

novel fuzzy attitude inspired by two significant fea-

tures of human information processing: active learn-

ing and brain qualitative modular processing with no 

complex mathematical computations [2]. Brain com-

poses distributed modular structures and different 

areas processing different types of sensory patterns 

[3]. There are complex interconnections and interac-

tions among these modular sub-systems. For exam-

ple, the taste is strongly influenced by its odor [4]. 

Correspondingly, psychological evidences have 

demonstrated that human handles real world complex 

systems as a combination of simpler and more com-

prehensible aspects of entire system [5], This helps to 

consume less energy to acquire information, and al-

lows us to discover each input-output correlation and 

their influence in the whole system without complex 

mathematical processing. This concept is known as 

reductionism in philosophy of mind, in which a com-

plex phenomenon is represented as a combination of 

partial simpler phenomena or as a superposition of 

sub-causes effects [6]. 

ALM has been developed by Shouraki to advance 

a new computational paradigm closely mimicking 

human information processing. This paradigm avoids 

complex mathematical computations and definitions, 

in contrast to the most conventional soft computi 

tools [7]. Distinguished features of this soft computer 

make it suitable to use in pattern analysis applica-

tions. In this work, we assess prominent capabilities 

of ALMC in comparison to some of the traditional 

classifiers. Different types of standard benchmarks 

are used, including Iris data set, a complex helical 

structure, Sugeno-Yasukawa function approximation 

and a remote sensing image classification which is 

performed by a new ALMC architecture for active 

pattern analysis. 

In the next section, ALM is elaborated clearly. In 

section III standard benchmarks are analyzed. In sec-

tion IV active analysis of a remote sensing image as a 

Fig.3 General Structure of a double-input single-output 

ALM with 4 IDS units and characterized by three layers 
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Fig.1 A simple two-input single-output system 
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Fig.2 IDS unit X12 and the part of system characteristic sur-

face of potential projected data points. 

 



realistic application is investigated and finally con-

clusion and remarks are presented in section V. 

2.  Active Learning Method 

ALM is an adaptive recursive fuzzy inference sys-

tem expressing a MIMO system as a fuzzy combina-

tion of simpler SISO systems. Each SISO system is 

described as a 2-D xi-y grid plane called IDS unit. 

These units, as the processing layers of ALM, consist 

of (xi, y) projected data points belonging to specific 

segmented intervals of other input variables domain. 

For instance, in Fig.1 a simple two-input single-

output system is shown. If each input domain is seg-

mented to two regular intervals, there is overall four 

IDS units which capture related data points: X11 = 

{(x1,y)|x2[0,0.5]}, X12 = {(x1,y)|x2[0.5,1]}, X21 = 

{(x2,y)|x1[0,0.5]} and X22 = {(x2,y)|x1[0.5,1]}. 

Fig.2 shows X12 IDS unit and the part of system cha-

racteristic surface including potential projected data 

points on X12. Intervals can be segmented to smaller 

sub-intervals that increase overall IDS unit numbers. 

This structural evolution acts like a granular know-

ledge resolution tuning. It means that IDS units re-

lated to smaller intervals capture higher resolution of 

spatial content, in spite of their lower chances in data 

capturing, causing sparser data plane. It is depicted in 

section III that in cases with large learning data set 

size, partitioning number should be large enough to 

achieve more accurate modeling and vice versa. On 

the other hand, X12 in Fig.2 illustrates that in some 

intervals of x1, data points are thinly scattered. So 

that correlation between output and x1 in the intervals 

with large dispersal area is less than intervals with 

small spread. This difference arises from the fact that 

in larger dispersal areas of x1 there is more possible 

values to choose as SISO output characteristic. So 

this feature indicates how much output value of SISO 

depends on the related value of x1.  

A simple architecture of ALM for a double-input, 

single-output system with four IDS units is shown in 

Fig.3. ALM has three layers. Input layer, in which 

input patterns are, distributed in IDS units. Modeling 

layer, the associative layer of ALM operates as most 

important part of ALM which extracts SISO sub-

systems’ characteristic functions, hereafter Narrow 

path and its effectiveness in entire system or Spread 

value. Since IDS units, or SISO sub-systems, capture 

specific partial spatial content, these two features are 

called partial knowledge in pervious works [8]. In 

learning phase projected data points are fed by a 

fuzzy curve fitter operator (IDS operator) to extract 

narrow and spread values. In the modeling phase 

narrow and spread are delivered to inference layer to 

consolidate partial knowledge and make top level 

decision. In Fig.3 ѱij and σij parameters stand for nar-

row and spread values respectively. In the next sec-

tion, mathematical outlook of IDS is described.  

2.1. Ink Drop Spread Operator 

IDS operator is a fuzzy curve fitting technique op-

erating on scattered data plane of IDS units to inter-

polate narrow trajectory and extract spread values. 

This knowledge extraction engine is considerably 

similar to the fuzzy patch proposed by Bart Kosko 

[9]. It is like a Gaussian Ink Drop with radius R 

spreading around each projected data points. As a 

fuzzy technique, Ink Drop acts like a radial base 

membership function around crisp data points, and 

provides none-precise representation of the experi-

mental data. Fig.4 shows X12 IDS unit which is fed by 

Ink Drops. Darker areas means bigger three-

dimensional membership value for related (xi, y) 

point. Also for the points whose Euclidian distance is 

less than R, ink Drops overlap together and ink inten-

sities become more concentrated (knowledge over-

lapping property). Depending on different constraints 

in different applications, mathematical implementa-

 
Fig.4 IDS unit X12 with 256×256 resolution grid plane, operated 

by IDS operator with R=9. White path: extracted narrow trajec-
tory and double side arrow: Spread value. 

 



tion of narrow and spread could be different [2], [5], 

[8]. But as a general aspect, the value of narrow path 

for each xi is being calculated by Center of Gravity 

Defuzzification (COGD) over fuzzy-like (ink intensi-

ty) weighted (xi, yk) points (ѱ in Fig.3). As discussed 

before, Spread is a parameter showing the output’s 

certainty around narrow path and indicates effective-

ness degree of corresponding input in overall system 

output. So, smaller spread value shows bigger effec-

tiveness and vice versa.   

In this work Mathematical form of Ink Drop, nar-

row and spread implementation is as following equa-

tions. It is worth to mention that hereafter all input 

and output values have been normalized before train-

ing. Let’s suppose (p1, p2) is the point of Ink Drop 

(center of Gaussian membership function) on X-Y 

plane and d(x, y) denotes the darkness level at (x, y) 

so: 
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Where n is IDS grid plane resolution, Iij denotes as 

Ink intensity or fuzzy-like membership degree for 

each yj values corresponding to xi. 
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If  }0),(|{, yxdyx  , there is no know-

ledge and no experiences about the x points. There-

fore, the most conservative value for narrow and 

maximum value for spread must be chosen, as bel-

low: 
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In Fig.4 extracted narrow trajectory and spread 

value in X12 unit is shown by a white path and double 

side arrow respectively. It is noticeable that the size 

of Ink Drop pattern influences the model accuracy, 

depending on the training set size. Tuning of Ink 

Drop size and spatial partitioning of input domains 

enable a resolution tuning mechanism for ALM [8]. 

In sparser data planes, it is necessary to apply a large 

Ink nevertheless consenting of the spread value in-

creasing. In fact IDS is an inference engine of ALM 

that identifies operands for inference rules.  

2.2. Inference layer 

In modeling phase, fuzzy inference layer uses nar-

row and spread values to unify partial knowledge and 

extract entire system characteristic. For each IDS 

unit, there is a fuzzy rule. In the case of N-input vari-

able with mi partitions, the number of combination 

rules and IDS units related to ith input, denoted by li, 

and the total number of rules, denoted by L, is as fol-

lows: 
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Also the kth rule of the ith input variable, Rik (k = 

1, 2… li) can be described as bellow:  

)(

:

1

1

1

1

2

2

1

1

1

121

iik

N

jN

i

ji

i

jijjik

xYthenAxAx

AxAxAifxR

Ni

i





















     

(7) 

Where A
S

Js is js-th segment of S-th input and 1≤ S ≤ 

N, S ≠ i. As discussed in this section, IDS unit Xik 

includes projected data points belonging to specific 

partitions of other variables. In the modeling phase, 

these sub-domains have been described fuzzy inter-

vals. So rule Rik could be activated when all antece-

dent terms of A
S

Js has non-zero membership degree in 

(7). Then Xik-Y plane would be activated by specific 

truth degree and its partial knowledge including nar-

row and spread will take part in top level decision 

making process. Consequently, the overall output is 

obtained by Min–COGD composition through fuzzy 

rules, as follow:  

NN NlNlikik ororororisY  ......1111 (8) 

In which or is union operation (S-Norm) and βik is 

normalized term of spread reverse value. The truth 

degree of Rik described by (9): 
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In equation (9), αik is the normalized reverse value 

of Spread for IDS unit Xik, and γik stands for Rik truth 

degree. The logarithmic function as a depression 

mapping has been used to smooth sharpness of 

spread reverse value and general modeling surface.  

Because of matrix-like architecture of IDS, memo-

ry cost is a drastic challenge in ALM [2], [5]. An 

arithmetical form of IDS in a pipelined architecture 

with similar functionality and better storage perfor-

mance, called PRIDS, has been developed by Firouzi 

et.al [10]. In contrast to IDS, PRIDS is an iterative 

operation. But its pipelined form of arithmetical cal-

culation makes it a considerably fast method for 

hardware applications and free from matrix-like sto-

rage. Also recently, Merrikh-Bayat et.al proposed an 

analog hardware solution based on Memristor Cross-

bar that is more compatible with real time and non-

exact nature of IDS, in contrast to the digital ap-

proach [11].  

3. Active Learning Method Classifier 

From the learning point of view, ALM is a super-

vised online learning algorithm with conspicuous spe-

cifications, such as noise immunity and rapid 

straightforward learning process. As opposed to most 

of the classical supervised soft computers, such as 

SVM as a kernel base classifier, ANNs and Adaptive 

Neuro-Fuzzy Classifier (ANFC), ALM is free from 

iterative mathematical computations to achieve learn-

ing convergence. Therefore, it could provide a clas-

sifier with distinguished abilities. In this section, these 

abilities are inspected and compared with the tradi-

tional classifiers using three standard benchmarks.  

3.1. Iris Data Set 

Iris data set is a famous simple classification 

benchmark to evaluate new algorithms. It contains 

150 four dimensional data of three types lily flower, 

in which two classes are not linearly separable. In the 

learning phase 75 random data patterns are chosen 

and other 75 samples is used for evaluation process 

and does not take part in learning. All input and out-

put patterns are normalized between zero and one.  

Also, ten randomly selected training and validation 

sets are used to evaluate classifiers.  

In this problem, ALMC is architected as four-input, 

single-output system. Resolution of IDS grid planes is 

set as 256×256. But since different forms of partition-

ing and ink drop pattern generate different classifica-

tion rates, in order to acquire most efficient architec-

ture with less redundancy and best performance, an 

evolutionary optimization solution is proposed in 

which mean classification rate over all random data 

batches is examined by evolution of ink radius and 

input partition numbers. GA is a heuristic evolutio-

nary computation tool that is theatrically eliminates 

computational cost of massive optimization problems. 

In this work a GA machine with population size of 6, 

Gaussian mutation function, scattered crossover func-

tion and uniform stochastic selection function has 

been used. Fitness function is the mean classification 

error over all 20 random sets. This function has 5 in-

put variables: partition numbers of each input variable 

and ink pattern radius. Evolution of mean fitness val-

ue and mean individual distances over 20 generation 

has been described in Fig.5. Algorithm is saturated 

with the best fitness value of 3.66% after 6 genera-

tions. Then best individual is selected for ink pattern 

size and partition numbers. Consequently, ALMC  is 

set up by 1504 IDS units in accordance with 6, 8, 8, 

and 7 partitions for each input variable and Ink radius 

of 10 (4% of plane resolution). Also, because of the 

single output architecture, pattern coding is per-

formed like an ordinary binary output coding in 

FFNs [12]. So the output domain is divided into three 
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Fig.5 Evolution diagrams of (big diagram): Individual average 

distance for each population generation, (Small): Mean Fitness 

value. 



intervals as output label values and two boundary 

intervals as unknown values. 

The results of ALMC mean classification rate over 

ten random training and validation sets in comparison 

to Feed-Forward Neural Network, Radial Base Func-

tion Neural Network and Support Vector Machine are 

listed in Table. I. FFNN is a four-input, three-output 

network with two hidden layers of 5 and 35 sigmoid 

neurons. Also, Levenberg-Marquardt Back-

Propagation learning algorithm as the most effective 

BPL algorithm has been used with learning rate of 

0.001.  

RBFN is a four-input, three-output fixed center 

strategy network with Gaussian receptive fields. Fixed 

center network is an expanded form of generalized 

RBF network in which single basis function has been 

centered on a single learning pattern [13]. Receptive 

field spread value is set at 0.04, to be consistent with 

the ink drop radius that is set at 4% of input variables 

resolution. There is sort of resemblance between radi-

al base function receptive fields in RBFN and Ink 

Drop in ALM. When an Ink Drop is exerted on a crisp 

pattern, a three dimensional radial base membership 

function (IDS), with specific radius and center of in-

put data, captures spatial neighborhood of the pattern. 

Moreover, experiments show that the effect of single 

Ink Drop in the overall system is similar to a non-

symmetrical receptive filed [14]. Similarly, in RBFN 

fixed point network, a single pattern generates a sin-

gle Gaussian receptive field that is about to catch spa-

tial content around data point. In accordance with the 

SVM classifier, Gaussian function with 0.02 value of 

sigma is chosen as the kernel function. Also, Sequen-

tial Minimal Optimization (SMO) method is used to 

find the separating hyperplane.  

Table I. shows mean classification rate of ALMC 

compared to RBFN, FFNN and SVM. As you see, 

ALMC classification rate is comparable with RBFN 

and SVM. In contrast to FFNNs, ALMC needs no 

random parameter initializing in the training phase. 

This advantage provides more stability in the classi-

fication phase and more tolerance for the parameter 

uncertainty. This is shown in Table I, where ALMC 

has less standard deviation over ten random sets 

compared to FFNN over both validation and training 

sets. 
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Fig.6 Data points of typical two-spiral classes with three twirls 

in Cartesian diagram 
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Fig.7 Classification rate through ALMC structural evolution in 

two-spiral problem 

 

Table.1 Mean classification rate of validation and training data sets over 10 random sets of Iris 

Iris Data Set 

Classification 

Method 

Training Set Validation Set 

Classification 

Rate (%) 

Standard 

Deviation 

Max Rate 

(%) 

Min Rate 

(%) 

Classification 

Rate (%) 

Standard 

Deviation 

 

Max Rate 

(%) 

Min Rate 

(%) 

ALMC 98.27 1.18 100 96.00 94.40 1.66 97.33 92.00 

RBFN 99.60 0.65 100 98.66 94.66 1.78 97.33 90.66 

FFNN (LM+) 96.13 1.78 97.33 93.33 89.33 % 6.28 97.33 78.67 

SVM (RBF*) 98.98 0.84 100 97.78 96.13% 1.13 97.78 94.22 
+ Levenberg-Marquardt Back-Propagation learning algorithm 
*
Radial Base Function Kernel 



3.2. Classification of Complex Helical Structure  

 One of the well-known intricate classification 

benchmarks is the two-spiral problem with two 

intertwined helical structures [15]. Each spiral 

structure is comprised of 97 data points. There are 

194 points in total, located on the polar plane 

according to (10): 

0)2( rnpr      (10) 

Where r and θ is radius and angel in polar plane 

and p is the parameter that determines the size of the 

spiral. r0 and n represent the start point radius and 

number of spiral rotation respectively. In this work 

typical values of p = 1/π, r0 = 0.5 and n=3 are used. 

In Fig.6, data points of typical two-spiral structure 

with three twirls in Cartesian diagram are shown. 

Traditional ANN classifiers such as Multi-layer 

Perceptron with standard BP learning are trapped in 

local minimums and cannot perform a stable classifi-

cation in this problem [16]. Therefore, it needs a 

network to learn a highly nonlinear separation. It is 

possible to completely classify this complex structure 

only by sophisticated preprocessing on patterns [15] 

or using FFNNs with refined architecture and learn-

ing algorithm. For instance Cascade-Correlation ar-

chitecture has better performance in this problem, 

with faster convergence in comparison to typical 

FFNNs [17]. Ikuta et.al developed a feed-forward 

network with one additional layer of chaotic oscilla-

tory neurons to classify two spirals [16]. In some 

methods, geometrical nature of spirals is considered 

as angel and radius imposed to a knowledge-based 

neural network. This method inhibits better perfor-

mance and fast convergence [18]. Liang proposed a 

Monte Carlo learning method for MLP and achieved 

successful classification of two spirals using this 

network with 30 hidden neurons. Liang’s network 

needs about 10
7
 iterations to prosperously separate 

two structures [19]. 

All mentioned works emphasize natural complexi-

ty of this problem. Therefore, most successful me-

thodologies suffer from massive computations and 

complex learning process and architectures to 

achieve full classification. So the supervised algo-

rithms that can perform a complete classification of 

two-spiral without any preprocessing and refine-

ments, is the superior classification solution. Adap-

tive Neuro Fuzzy Classifier is the successful super-

vised solution for this intricate problem [20]. ANFC 

is a kind of Takagi-Sugeno-Kang (TSK) fuzzy infe-

rence system, in which fuzzy membership functions 

could be adaptively adjusted using BPL. Despite its 

iterative learning process, ANFC is significantly 

   

(a) ALMC      (b) ANFC 

Fig.8 The 512×512 pixel image of classified two-spiral structures using: 

(a): two input, single output ALMC with 15×15 triangular-shaped fuzzy partitioning (225 rules), Ink Radius 9 and 256×256 IDS grid planes.  

(b): ANFC with 15×15 bell-shaped membership functions (225 rules) and hybrid learning (least square-BPL) with 200 epochs. 

Black: Class 1, White: Class 2, Gray: Unknown (Binary output Coding) 

 

 

 

 



faster than neural classifiers. Fundamentally, this 

ability arises from considering spatial feature of pat-

terns through adaptive adjusted fuzzy membership 

functions. Similar to ANFC, ALMC has made possi-

ble spatial knowledge resolution tuning through pat-

tern space segmentation and adjusting the size of Ink 

Drop. This capability is a top-down structural evolu-

tion that allows granular knowledge refining from 

conservative view to more comprehensive insight. 

Also in contrast to ANFC and neural classifiers, 

ALMC uses a pattern-based learning mechanism free 

from iterative computational process. 

So to achieve a full classification rate, ALMC ar-

chitecture is established from a low resolution to 

higher ones, searching for complete classification 

rate. Fig.7 presents the evolution of partition numbers 

to meet complete classification. Due to symmetrical 

geometry of spiral patterns, the partition number for 

each variable is set to equal values. As shown in 

Fig.7, the minimum partition number for ALMC to 

obtain 100% classification is 13, generating 169 

rules. The radius of Ink Drop is 9 and grid planes are 

256×256. It is noticeable that to achieve full classifi-

cation by ANFC, at least 13 fuzzy membership func-

tions are necessary for each input variable as like as 

ALMC (169 overall fuzzy inference rules) [20].  

Besides providing a highly nonlinear separable 

benchmark, two-spiral is also useful in visual analy-

sis of two twined objects. The output of a 512×512 

pixels image over Cartesian plane of Fig.6, classified 

by ALMC and ANFC, is shown in Fig.8. ALMC has 

15×15 partitions, with the ink Drop size and grid 

plane resolution set as 9 and 256×256. Similarly, 

ANFC consists of 225 rules made by 15×15 bell-

shaped membership functions. Membership functions 

have been adjusted using hybrid learning algorithm 

(Least Square Error-Gradient Descent BPL) with 200 

epochs. As a consequence of visual inspection of 

Fig.8, both classifiers clearly achieved full classifica-

tion, but ALMC results in a more obvious twined 

outcome in comparison with ANFC.  

In this work, ALMC has been set up as a two in-

put, single output system in which the output values 

above 0.6 are marked as class 1 (Black color in 

Fig.8) and values less than 0.4 are labeled as class 2 

(White color in Fig.8). The values between 0.4 and 

0.6 are classified as unknown output (Gray color in 

Fig.8). This coding scheme is known as binary out-

put coding in FFNs [12]. 

There is no standard time criterion for this problem 

in the literature. But mean learning and classification 

run time per each pattern in ALMC with above pa-

rameters is 12.77ms and 1.46ms respectively. Mean 

learning and classification time for ANFC is 2.28s 

and 0.95ms. Due to similar fuzzy modeling phases in 

ANFC and ALMC, classification times for the two 

classifiers are comparable. However, since the main 

part of the learning process in ANFC is performed as 

BPL iterative process, the learning run time in ANFC 

is two orders of magnitude longer. In the next sub-

section a comparative description of ALMC and 

ANFC is elaborated. 

3.2.1. ALMC versus ANFC 

Since both ALMC and ANFC are addressed as 

adaptive fuzzy inference systems, their similarities 

and advancements should be explained. In fact, 

ANFC (ANFIS Classifier Machine) is a TSK fuzzy 

inference system with adaptive antecedent and con-

sequent parts. This adaptive form of TSK is known 

as a major step forward in machine learning reveal-

ing a new hybrid paradigm, eliminating the lack of 

systematic learning in fuzzy systems. As shown in 

Fig.9, ANFC includes five general layers. Square 

nodes depict adaptive nodes in which parameters are 

adapted during the learning process to meet target 

output. Circle nodes stand for non-adaptive 

processing units. Layer1 is the fuzzification unit and 

consists of the antecedent part parameters. These 

parameters describe the form of membership func-

tions for fuzzy sets. In Layer2, there is a fuzzy rule 

for each single node performed by a T-Norm opera-

tion such as Min, to specify truth degree of corres-

ponding rule. Layer3 normalizes truth degrees and 

Layer4 is TSK form consequent part by which output 

is described as a parameterized linear combination of 

input variables. Due to the linearity of consequent 

part, its parameters could be identified by linear op-

timization algorithms such as LSE, ensuring a faster 
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Fig.9 General Structure of ANFC with 2 inputs-single output 

and 2×2 fuzzy membership functions (4 Rules) 



convergence. But premise part parameters should be 

adjusted through gradient descent and iterative 

process of error back-propagation. Finally Layer5 

carries out COGD to model output. ANFC provided a 

new hybrid paradigm to manipulate oral form of 

knowledge. But human mind information processing 

is handled by qualitative knowledge and never in-

volves exact mathematical definitions [2]. In addi-

tion, human brain often analyzes information in the 

form of image so that events are visualized by pat-

tern-based memory [5].  

ALMC presents a novel pattern-like learning para-

digm for identification of consequent terms and 

membership function establishment, with no repeti-

tion of error propagation. Adjustment of membership 

functions is performed implicitly so as they have 

been taken part by their importance degree (spread 

values) in the final Defuzzification process. In other 

words, instead of antecedent part, consequent part of 

inference system includes two parameters. In (8) and 

(9) βik as weight values of Defuzzification, is a nor-

malized term of Rik rule’s truth degree and its impor-

tance degree (σik). So by imposing a  new leaning 

pattern into IDS planes or equivalently dropping new 

Ink Drops, narrow path (ѱik), as explicit consequent 

term of related fuzzy rule (see (7)), and spread value, 

as its partial effectiveness, would be updated. This 

update is conveyed as a local operation. It means all 

ѱ and σ parameters do not need to be adjusted by 

single pattern learning, and just those whose IDS unit 

captures new patterns should be updated by new Ink 

Drops. This benefit arises from top-down view to 

MIMO system as a combination of SISO systems in 

ALM. 

However ALMC is considerably fast and a pattern-

like learning mechanism is provided by non-exact 

IDS operator. But it needs larger size for memory 

space in comparison to ANFC. This challenge defi-

nitely restricts the applications of ALMC in high 

dimensional space. Knowledge in ANFC is stored 

through adjusted parameters. So for online learning 

of a new pattern, it needs no information about pre-

vious patterns, and it is independent from order of 

patterns. But to update IDS units by a new pattern, it 

is necessary to store all previous ink intensities 

through IDS matrix-like memory. Firouzi et.al de-

velops a novel biologically plausible hybrid model 

for ALM using sparse temporal coding on RBF spik-

ing neurons [8]. This model, called Spike-IDS, is a 

translated form of Ink space into spike time coding, 

by which narrow and spread could be extracted and 

stored through spike time dependent weighting dis-

tribution of Spike Response Model (SRM) neurons. 

This form of knowledge representation for inference 

layer enables us to use ALMC for classification with 

higher dimension [14].  

3.3. Sugeno-Yasukawa function approximation  

Generally in modeling tools e.g. ANNs, fuzzy 

TSK, ANFIS, to obtain better noise immunity and 

uncertainty tolerance, it is necessary to generate extra 

noisy data patterns in learning phase and iterate addi-

tional training process which causes run time cost. 

But in ALMC there is natural noise robustness ability 

that is emerged from IDS operator and calculation 

mechanism for narrow and spread. Ink Drop acts like 

adding a Gaussian-like distributed noise into the 

learning data points. Also, narrow path and spread 

calculated by averaging, resulting in more immunity 

against noise. This section investigates this ability. 

RBFN is known as one of the most powerful noise 

immune function approximation tools. This kernel-

base network is implemented by linear combination 

of non-linear local decision boundaries called recep-

tive fields. Basically, motivation for radial basis 

functions arises from a consideration of the interpola-

tion problem, especially when the input variables are 

noisy [13]. So to probe modeling ability and noise 

immunity of ALMC, it is compared with RBFN to 

approximate 2-input, 1-output Sugeno-Yasukawa 

function in presence of noise. This function is de-

scribed as bellow [21]: 
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In order to assess the model accuracy, the error be-

tween target function and constructed model was 

measured using Fraction of Variance Unexplained 

(FVU) defined in (12) [22]: 
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Where xk is kth (k =1, 2, 3...L) input vector, xk = (x1
k
, 

x2
k
), and ŷ is the output of constructed model. The 

FVU is proportional to the mean squared error. As 

the model accuracy increases, the FVU approaches 

zero. The FVU is calculated over 10,000 mesh-like 

intersection points covering x1-x2 domain plane. Let 

T1 and T2 be the sets of x1 and x2 coordinates. The 

input vectors of the test set are described by the Car-

tesian product of T1 and T2, obtained from (13): 
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In this work c1 = 9 and c2 = 1 for the domain of (11). 

Mean FVU error over mentioned test set for ALMC, 

trained by four different types of training batches, has 

been calculated. Each data batch includes 10 random 

training sets with set size of 100, 250, 400 and 550 

samples. The results for three ALMCs with different 

partitioning and three different Ink Drop patterns 

have been compared with RBFN in Table II.  

The power of knowledge resolution tuning in 

ALMC is illustrated in Table II. For sparse know-

ledge space, small partition number and large Ink 

Drop lead to smaller FVU error. Adequately large 

Ink Drop performs better curve fitting in thinly scat-

tered IDS plane. As it can seen in Table II, in training 

data sets with 100 samples, for constant ink radius, 

FVU error becomes large as for increasing partition 

numbers. Similarly for constant partition number, 

increasing the ink radius reduces the FVU error. But 

in medium size data sets (250, 400), medium resolu-

tion (8×8 partitions, 12 Ink Drop Radius) needs to be 

tuned to obtain optimum FVU. Whenever knowledge 

space be enriched enough (data set with 550 sam-

ples), large partition number and small Ink Drop re-

sult in better performance. In this case, by dropping 

large IDS, spread values become large without any 

significant improvement in narrow trajectory extract-

ing. So accuracy falls down due to model over-

fitting.   

 

Regarding to ALMC Ink size, size of RBFN base 

function is adjusted in three tips and two additional 

boundary values. FVU for RBFN is comparable with 

optimum adjusted ALMC over most cases of data 

sets. 

To analyze modeling performance of ALMC in 

noisy environment, noise sensitivity parameter is 

defined as following equations: 

noiselessnoisy FVUFVUS    (14) 

100
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Where x is input validation vector, ñ stands for 

normalized uniform noise and p is noise percentage. 

Fig.10 describes RBFN and ALMC noise sensitivity 

over ten different noise percentage. It is clear that 

ALMC noise sensitivity is as well as RBFN which is 

known as one of the most famous noise robust tools 

for function approximation problems [13]. 

4. Active Classification of Remote Sensing Image  

To evaluate the applicability of ALM in more rea-

listic classification tasks, a supervised remote sensing 

image classification problem is chosen.  This type of 

classification contains a large number of data points 

with un-balanced distribution and probably noise 

contents. Also, large dataset enables performance 

evaluation of a classifier in real applications. 

Nowadays remote sensing is used in wide range 

applications such as agriculture and mineralogy, sur-

veillance applications, military logistics and etc. 

Many researches with different directions have been 

Table.2 Mean FVU Error of function approximation for ALMC 

with different training set size and partitions in comparison with 

RBFN.  

Number 
of Parti-

tions 

IDS Ink 

Radius 

Training Set Size 

100 250 400 550 

5×5 

6 (%5)+ 0.295 0.082 0.059 0.048 

12 (%10) 0156 0.065 0.056 0.054 

18 (%15) 0.143 0.071 0.065 0.064 

8×8 

6 (%5) 0.508 0.075 0.034 0.027 

12 (%10) 0.200 0.049 0.030 0.028 

18 (%15) 0.152 0.049 0.033 0.033 

12×12 

6 (%5) 0.991 0.136 0.041 0.024 

12 (%10) 0.440 0.056 0.028 0.025 

18 (%15) 0.289 0.051 0.031 0.029 

RBFN Receptive Fields 
Radius 

    

0.01 0.365 0.063 0.033 0.025 

0.0234 (%5) 0.133 0.050 0.030 0.024 

0.0469 (%10) 0.128 0.060 0.046 0.045 

0.0703 (%15) 0.146 0.091 0.079 0.081 

0.1 0.187 0.140 0.131 0.135 

+
Percentage of IDS gird plane resolution. 256×256. 
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Fig.10 Noise Sensitivity of ALMC in comparison with RBFN 

(Spread=0.035) as Noise Percentage. “IDS radius = 9, 12×12 

partitions, 256×256 IDS planes, 550 data samples” 



accomplished in this field to overcome main chal-

lenges. By dramatic growth of information 

processing techniques whether in soft computing or 

advances in hardware architectures, today it is possi-

ble to analyze Very High Resolution images with 

Hyper-Spectral distribution, where each pixel con-

sists of hundreds spectral bands ranging from infra-

red to visible spectrum [23]. However, performance 

of supervised algorithms is highly pattern-dependent, 

so selection of proper training pattern set is empha-

sized [24]. But it is very time consuming and redun-

dant to label best pixels by visual inspection and ma-

nual photo-interpretation, especially in VHR images 

with high dimensional Hyper-Spectral distribution. 

Thus, sophisticated methods for data gathering and 

pattern refinements are necessary and some methods 

has been proposed [25], [26]. These methodologies 

enable more accurate and less time consuming classi-

fication by preparing less redundant training sets with 

considerably smaller size.  

Active learning as a knowledge refinement policy 

is a very successful approach for smart data gathering 

[24]. As discussed in section I, one of the leading 

ideas in ALMC is active learning, which has been 

addressed as one of the most important features of 

human intelligence. So it seems this classifier is inhe-

rently compatible with solution methods for the men-

tioned challenges in remote sensing image classifica-

tion. In this section, a new ALMC architecture used 

as an active classifier is proposed. This classifier eva-

luates input patterns using fuzzy rule base evaluator, 

in order that unclassified or uncertain patterns could 

be refined by strengthening good patterns and elimi-

nating destructive patterns through evaluator feed-

back signals. From another point of view, ALMC 

acts as an expert system evolving via a general poli-

cy. This policy has been exerted through fuzzy rule 

base evaluator.  

In this section, ALMC is set up as three-input, 

three-output system (Fig.11). It comprises three in-

dependent three-input, single-output ALMCs. Each 

single-output ALMC tries to identify single class of 

terrains and distinct it from other classes. The ob-

served pixel is labeled as 0.9 for related identifier 

ALMC, and 0.1 for other distinctive ALMCs. For 

instance, in Fig.11-right for a farm land, the output of 

ALMCFarm is marked as 0.9; ALMCEmpty and ALMCRe-

side are labeled as 0.1. Also unclassified and unknown 

areas, as default output value of ALMC (section II), 

are naturally marked as 0.5. This style allows the 

evaluator to assess input patterns by analyzing belon-

gingness and exclusion degree (μb
x
, μs

x 
membership 

values in Fig.11-right) for each single class simulta-

neously. 

Spatial content of data has long been examined as 

an important feature in Geographical Information 

processing. Fundamentally, the first law of geogra-

phy is “Everything is related to everything else, but 

near things are more related than distant things” [27]. 

So, always the neighborhood information is consi-

dered, as well as global correlation among pixels 

[23]. In this work, spatial content of local terrain has 

been considered using fuzzy IDS-like observation of 

neighborhood pixels. In Fig.11-left, a pyramid-form 

IDS window is shown, which is centered on a single 

pixel and performs weighted averaging on covering 

pixels RGB bands. This form of observation on pixel 

bands enables labeling in accordance with some par-

tial information about neighborhood and texture. In 

addition, it acts as a bilateral filter providing better 
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noise immunity. As a result of this feature, in addi-

tion to the overlapping property and the fuzzy curve 

fitting technique of IDS, an input can activate single 

ALMCs to different degrees. It means that there is 

some overlapping area among class boundaries, in-

cluding pixels with similar characteristic. So a fuzzy-

likelihood evaluation mechanism is at hand.   

The problem is identification of three types of ter-

rains: farm lands, residential areas and empty lands in 

a medium resolution satellite image (6m/pixel, 

681×584) taken by OrbView-3, Geo-Eye satellite in 

August 2006 from an agricultural special region of 

BASTAM fertile plain at north-east of Iran (Fig.12-a). 

Training data set is different from validation image, 

including 4500 random pixels of three different ter-

rains. Partition numbers for ALMCs is 10 for each 

input domain. ALMCs are comprised of 900 IDS 

units in total, with IDS plane resolution of 256 and 

Ink Radius of 9. Also, the radius of pyramid-IDS is 

set as 3 pixels, covering a local neighborhood area of 

30m×30m.  

The main policy of the evaluator to identify input 

pattern is founded on belongingness and exclusion 

degree for each ALMCs. In other words, the best 

candidate for a specific class has the largest belon-

gingness and the lowest exclusion degree for the re-

lated ALMC. Also, the patterns which are failed to 

classify are evaluated by a rule-base and relearned 

with best candidate labels. Hence, the best candidate 

label should be strengthened in corresponding nomi-

nated ALMC by imposing positive Ink Drop (Re-

ward) coinciding negative Ink Drops in other 

ALMCs (Penalty). Evaluation process has been de-

scribed as following rules (E, F, and R are abbrevia-

   
                                              (a) Original Image                    (b) ALMC 

   
                                                    (c) SVM                     (d) RBFN  

Fig.12 (a): Original Satellite Image, (b): Image classified by ALMC, (c): Classified image by SVM, (d): Classified image by RBFN; 

Residential area is labeled as Black, Farm lands as Pale Gray; Empty lands as Dark Gray and unclassified areas have been colored by White. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



tion of Empty, Farm and Residential Lands respec-

tively; Akx denotes k-th fuzzy set of class x): 

EOutARAFAifER rfe  1121.

FOutARAFAifER rfe  1212.

ROutARAFAifER rfe  2113.  

In case of E, F, R all belonging to A1x (R4) or A2x 

(R5), it is necessary to find the best candidate (lowest 

μs
x and largest μb

x) and relearn pattern with new la-

bels. Similar to R4, R5, when two of E, F, and R be-

long to A2x (R6-R8), the best candidate is selected 

from those classes for re-labeling. The cycle of pat-

tern analysis and imposing new patterns would be 

kept on until certain labeling for uncertain or unclas-

sified areas (hitting one of the R1-R3 rules).  

In Fig.12 original image and classified images 

proposed by ALMC, SVM and RBFN are shown. 

SVM has linear kernel and LSE method is used to 

find the separating hyperplane. RBFN spread value is 

set to 0.035. Also, empty lands marked by dark-gray, 

farm lands are colored with pale-gray, residential 

area is labeled by black and white color shows un-

classified areas. As shown in Fig.12, in boundary 

areas it is hard for SVM and RBFN classifiers to dis-

tinct each class. SVM is unable to classify 24% of 

area (Fig.12-c). This rate for RBFN is 13.5% 

(Fig.12-d), whereas the proposed active analyzing 

method has a clear remarkable performance in com-

parison with RBFN and SVM. It is noticeable that in 

spite of additional learning process in the proposed 

active classifier, overall run times are more than 3 

times less than SVM and RBFN classifiers.  

As discussed in this section, one of the big chal-

lenges in supervised remote sensing image classifica-

tion is dealing with a large amount of ill-balanced 

data. But generation of a suitable training set is diffi-

cult and needs extensive manual analysis of the im-

age. This challenge would be aggravated when image 

spectral dimension becomes large. Therefore, further 

investigations about sophisticated classifiers such as 

the method proposed in this paper is necessary for 

image analysis, especially in VHR images.   

5. Conclusions 

ALM is a powerful soft computing tool imitated 

by brain macro level findings. In this paper, ALM is 

investigated as an active classifier and evaluated by 

standard benchmarks including: Iris data set, two-

spiral problem, Sugeno-Yasukawa function approxi-

mation and a remote sensing image classification. 

Due to the fuzzy non-exact view of ALMC on data 

patterns and straightforward non-iterative learning 

process, it is addressed in this work as a rapid noise 

robust classifier which could be applied in a wide 

range of applications. One of the interesting features 

of ALMC is knowledge resolution tuning that 

enables a convenient top-down structural evolution 

for classification of complex helical structures, where 

most of the traditional classifiers need to be modified 

and iterated by numerous iterations to have better 

performance. Also a new ALMC architecture to ac-

tively analyze a remote sensing image is proposed. 

The results show the viability of the proposed me-

thod in active refinement and analysis of problems 

with ill-balanced pattern distribution. In contrast to 

ANNs and SVM in which whole adjustable weights 

take part in recognizing and learning of single pat-

tern, and also in contrast to ANFC, in which parame-

ters need to be iterated by gradient descent, in ALMC 

only pattern-related partial knowledge participates in 

the learning and modeling phases. The proposed 

classifier is considerably fast and provides 

straightforward learning process with more stability 

and tractability. 

Despite mentioned distinguished specifications of 

ALMC, the application of this method is highly re-

stricted to classification problems with high dimen-

sional input patterns such as Hyper Spectral images, 

due to the storage limitations for matrix-like memory 

of IDS units [5], [11]. We proposed an optimization 

solution in this work to prevent redundancy in 

ALMC. But IDS storage challenge seems elusive. It 

appears that Spike-IDS [8] as a neural implementa-

tion of IDS could overcome this challenge, using a 

dramatically memory efficient solution either for 

hardware or software platforms. Therefore, the appli-

cation of Spike-IDS in high dimensional classifica-

tion problems can be the subject of future research 
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