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Abstract

In this work we have examined the problem of consensus

information fusion from a novel point of view, challenging

the fundamental assumption of mutual trust among the fu-

sion parties. In quest for a method to make information

fusion possible while preserving the mutual confidentiality

and anonymity of the fused information even in case of col-

lusion of the malicious nodes, we propose the Blind Infor-

mation Fusion Framework (BIFF). In BIFF, which is a se-

cure information fusion framework, the nodes are not aware

of the actual information they are processing, yet converg-

ing to the intended result(s). We formulate BIFF according

to the anonymization transform and discuss its robustness

against collusions for privacy violation. As an example,

two secure consensus averaging methods are formulated

according to BIFF.

1 Introduction

Sensor networks have recently received much attention

due to their high potential in formation of the next gener-

ation information gathering and processing systems. The

flexible and scalable nature of them, boosted by agility in

their deployment, proposes them as one of the major play-

ers of anytime anywhere computing idea.

Most of the past research in sensor networks is concen-

trated on power-aware networks for information gathering.

Recent trends show high potential of sensor networks in for-

mation of distributed information fusion networks [12]. The

new paradigms transform sensor networks from mere data

gathering communication networks to more intelligent dis-

tributed systems which are able to process the information

to yield the intended result(s)[11, 14]. In this paper, by a

sensor network we mean a general network of arbitrarily

connected set of nodes which are sources of information for

fusion. In fact, we broaden our view from mere power con-

strained data gathering networks. Nevertheless, we consider

the challenges common in sensor networks including unre-

liable links, changing topology and power and computation

constraints.

There are some fundamental differences between distrib-

uted information fusion over sensor networks and the clas-

sical information fusion systems and data gathering sen-

sor networks. Sensor networks are loosely coupled, lim-

ited capability, infrastructure-less and sometimes untrusted.

In contrast, centralized information fusion schemes are

considered monolithic and structured with assumed inter-

component trust. Data gathering sensor networks share

many of the above mentioned challenges with distributed

information fusion networks from communication point of

view[4]; however, from computing point of view they ex-

hibit different properties[5].

We divide distributed information fusion into two main

categories: consensus information fusion or consensus fu-

sion in short and, non-consensus information fusion. In

distributed consensus fusion, the goal is to reach an agree-

ment on a definite or estimated value or vector which de-

pends on all members’ information. Consensus fusion is

one of the most important topics in distributed systems

and algorithms because of its applications in coordina-

tion and agreement[9] as well as distributed estimation and

filtering[12]. An example of consensus information fusion

is consensus averaging. We will discuss consensus averag-

ing as our main example throughout this paper due to its

importance and applications.

Non-consensus information fusion is obviously more

general. In fact, many of the common algorithms in dis-

tributed and networked systems can be modeled as a non-

consensus distributed information fusion. Routing proto-

cols can be considered an example of non-consensus infor-

mation fusion in general case as the fusion result, which is

the forwarding table, is different for each router.

We also note that information fusion is not always an

application over a sensor network. In many cases, it is a

mandatory part of the network and/or MAC layer although

not vividly stated. Especially for consensus fusion which

is our main focus, many of the routing protocols as well as

cooperative MAC protocols can be analyzed as a consensus

fusion function.

Security and reliability are two of the most challeng-



ing issues in sensor networks[4]. Although many infor-

mation fusion schemes exhibit a good level of robustness

to node failure and topological changes [10, 14], they lack

certain features such as information confidentiality and pri-

vacy. Here, by confidentiality we mean preserving the in-

formation from attackers outside the network or intruders.

In sensor fusion, confidentiality can be achieved through

cryptographic measures such as using group keys. How-

ever, privacy, by which we mean keeping each nodes’ infor-

mation private in the course of the fusion, is a more chal-

lenging issue. The challenge mostly stems from the fact

that the information must be communicated among the net-

work members to make fusion possible. One may propose

using a trusted third party which gathers the information,

does the computation and communicates the results. We

argue, however, that such solutions are not scalable and ro-

bust due to existence of the trusted third party. Also, the

trusted third party may not be available in many scenarios

since all nodes must have unconditional trust to it. This

challenge is addressed in the cryptography literature as “se-

cure multi-party computation (MPC)”[2]. The secure MPC

methods are focused on secure consensus fusion and sup-

ported by rigorous mathematical bases. Yet, many of such

solutions are not suitable for sensor networks since they re-

quire a fully connected topology and impose high computa-

tion and communication costs[2].

Most security solutions proposed so far for sensor net-

works mainly consider data gathering sensor networks. The

main goal of such methods is maintaining confidentiality,

integrity, availability and authenticity of the information in

transit[4]. The most important assumption behind all these

solutions is the implicit perfect trust between source and

destination, or in general case among the fusion party. In

other words, they assume that destination is authorized to

be aware of the information sent by the source. This may

not be the case in some situations. Generally, there may not

be mutual trust among the fusion party, although they might

be authorized to see the fusion result(s). The main differ-

ence of our point of view form the traditional approach in

sensor networks is that all methods proposed so far has fo-

cused on communication security, that is, their goal is to

protect the information in transit. In contrast, our focus is on

maintaining security in the course of processing or namely

computation security. These two topics have many over-

laps in a distributed system, where communication among

the components is inevitable. Nevertheless, there is a fun-

damental difference between the two since in many cases,

perfect knowledge of the processed information and/or its

source (the association between the source and the informa-

tion) is not mandatory.

Secure consensus fusion can be used to form anonymity

in some applications as well. Anonymity or more precisely

ownership anonymity can be defined as making the asso-

ciation between the source of the information and the in-

formation undetectable. In context of secure consensus fu-

sion, the information is anonymized in the sense that the

effect is observable in the results but its source is not iden-

tifiable. One example can be analysis of the security logs

and statistics of various organizations by each other. In log

anonymization, the goal is to anonymize the security logs

in a way that they can be processed by the security depart-

ments; yet, they do not reveal the exact vulnerabilities and

incidents in the system. Currently, the common method is

obfuscating sensitive parts of the logs like the IP addresses;

however, such methods have shortcomings[8]. Another ex-

ample is election, where, although all the voters are autho-

rized to be aware of the final results, each voter saves its

right in keeping his opinion private. In order to solve the

problem in todays election and voting systems, anonymous,

yet authenticated, ballots and ballot boxes are used which

preserves voter privacy through anonymization of the votes.

Patient anonymization is another application of secure con-

sensus fusion. In patient anonymization a group of health

organizations like hospitals decide to share their patient in-

formation for new findings by the analysis of the fused in-

formation. However, since patient privacy must be kept, the

exact information can not be shared. A common practice

is to anonymize the records by obfuscating their identifica-

tion information. Yet, as a patient may have been recorded

at more than one organization, the accuracy of the results

might be affected. This is very critical especially for dis-

eases like HIV.

The above examples are given to clarify the role of se-

cure consensus fusion in general sense. In mobile comput-

ing and communication applications, there are many poten-

tial applications as well. The number of applications will

grow substantially considering the trend towards more intel-

ligent distributed information systems like intelligent sensor

networks. Electronic voting can be considered as one of the

promising applications of secure consensus fusion. Never-

theless, we believe that secure consensus fusion has many

of its applications in secure formation of intelligent sen-

sor networks like battlefield networks. Secure election of

various roles like leaders is an example. Secure consensus

fusion over sensor networks can make implementation of

many cryptographic functions over sensor networks such as

group digital signatures more scalable by removing the need

for a trusted third party or predefined secure base stations

for sensors. Calculating network wide parameters such as

average remaining energy, number of neighbors and rate of

energy consumption securely is another example.

Kefayati et al. have addressed the problem of secure

information fusion as well as secure consensus averaging

in [5], [6] and [7]. In [7], they have proposed a method

for secure consensus averaging assuming the fused infor-

mation are represented as continuous value numbers. Their



method, called Random Offsets Method (ROM), though very

light weight and efficient, suffers from steady-state error in

fusion results. They have also proposed another method[6]

for secure consensus averaging called Random Projections

Method (RPM) which does not suffer from steady-state er-

ror; however, it requires secure channel establishment be-

tween neighbors. Both of the methods can be considered as

special cases of the framework we present in this paper.

Our work especially addresses the problem of maintain-

ing mutual confidentiality and anonymity in the course of

fusion. This issue seems to be a paradox since its simple

goal is to find a way to calculate the results while keeping

the confidentiality of the processed information and/or their

origin. This is why we call it, blind information fusion, i.e.

the nodes must not see the real information they process.

Our work introduces a general direction towards secure in-

formation fusion in multi-agent and distributed systems in-

cluding various kinds of sensor networks. To the best of our

knowledge, this is the first work which addresses consensus

fusion security from this point of view.

The rest of this paper is organized as follows: In sec-

tion 2 we will present some preliminaries and introduce a

system model for distributed information fusion in sensor

networks. Section 3 is dedicated to introduction and analy-

sis of the Blind Information Fusion Framework (BIFF). Fi-

nally, in section 4, we conclude the paper and present the

future work.

2 Preliminaries and System Model

We model the network as a graph, G(V,E), with N =
|V | nodes or analogously, its adjacency matrix, A. We also

define Ni as the set of neighbors of the node i, i.e. j ∈
Ni ⇔ (i, j) ∈ E, and represent its size by ni. Also N ′i is

defined as Ni ∪ {i} and |N ′i | = n′i.

Representing each nodes’ information with a num-

ber, xi, the ultimate goal of the fusion is calculating

r = F(X) = F(x1, . . . , xN ) as the fusion result. In con-

sensus case, all nodes reach the same result, i.e. ∀i :
ri = r. For example, in consensus averaging we have

r = 1
N

∑
i xi. Due to scalability issues, the fusion or goal

function is usually implemented in a distributed manner,

i.e. we have ri = fi(xk) where k ∈ N ′i , and conver-

gence is achieved through multiple iterations of computa-

tion and communication of the intermediate results to the

neighbors. One must note that fi(xk) can have a totally dif-

ferent structure from F(X) elements. Also, even in case

of consensus fusion, fi(.) 6= fj(.) may hold as in adaptive

methods[13]. Such forms of distributed fusion are robust

and scalable since they replace multi-hop routing with in-

formation diffusion.

We focus on cooperative networks where the nodes be-

have according to a pre-defined protocol to achieve the fu-

sion result(s). Fair election is considered as one of the real

world examples of a cooperative systems: though all the

voters are interested in a democracy, each voter saves its

right for privacy of his/her own vote and therefore, the bal-

lots shall be anonymous and filled privately1. Nevertheless,

malicious members might be interested in other members’

information. In other words, we have focused on meth-

ods for maintaining mutual confidentiality of network mem-

bers’ information in the course of the fusion process. Dis-

cussion of non-cooperative networks is out of the scope of

the current work.

3 Secure Information Fusion

3.1 Problem Definition and Preconditions

We propose Blind Information Fusion Framework

(BIFF) which gives a general approach to preserving mutual

privacy and anonymity in information fusion networks con-

sidering an honest-but-curious adversary model. In other

words, we propose a solution for the following problem:

“Let us assume an arbitrarily connected coop-

erative set of nodes, each having a piece of in-

formation and interested in calculation of a func-

tion of all the information. How shall we calcu-

late the result in a distributed and scalable manner

such that the mutual privacy of all the members is

maintained; even if some members collude?”

According to our prior discussion, in consensus fusion, pre-

serving mutual privacy provides ownership anonymity. Pri-

vacy and anonymity are tied since a piece of information

from all nodes is required for calculation of the goal func-

tion. Therefore, from members point of view, it is a matter

of privacy while from the information and fusion point of

view it is a matter of anonymity. Again, considering the

voting problem example can clarify the case.

In a consensus fusion, some of the nodes may collude

to reveal other nodes’ information by, for example, sharing

their information. Therefore, robustness against collusions

is one of the most important goodness factors of a secure

consensus fusion scheme. We define the collusion resis-

tance level as the upper bound of the nodes that their col-

lusion can not reveal other node(s)’ information to capture

robustness of a secure consensus fusion scheme against col-

lusion. As shown in [5], this factor highly depends on the

algorithm and may even be related to node parameters such

as its connectivity degree.

1In general, voters may try to cheat in favor of their choice. This prob-

lem can be dealt with cheat proof protocols which can be implemented

independently along with the fusion method. There exists primitives for

cheater resistant MPC[3] as well.



Before going through our framework we shall discuss

two primary conditions in our context without which, pri-

vacy and anonymity is meaningless:

• Goal function anonymity: The goal function shall be

private and anonymous itself, that is, it must not give

information about specific sources. This requires the

goal function to be one-way with as equiprobable in-

verses as possible or one-to-one with P complexity in

forward and NP complexity in inverse path. Summa-

tion is an example of the former and group digital sig-

nature based on RSA algorithm is an example of the

latter case.

• Low correlation among sources of information:

There must be low correlation among the sources of in-

formation because the information of one node can be

guessed with high confidence from the other (collud-

ing) node(s)’ information when the correlation among

the sources is high enough.

As we will see, the goal function anonymity condition

is directly related to collusion resistance of the algorithms

proposed for secure information fusion. The goal function

anonymity condition can be extended to the goal function

anonymity order concept which is directly related to the col-

lusion resistance properties of the secure fusion algorithm.

3.2 The Blind Information Fusion Framework
(BIFF)

In order to preserve information confidentiality and

anonymity, we propose a pre-fusion transformation,

X
′ = A(X). The role of the pre-fusion transformation is to

obfuscates the information in a way that calculation of the

results is still possible from the transformed information:

A : X −→ X
′ (1)

where A is called pre-fusion transformation or anonymizer.

The anonymizer may require changes in the fusion function

(F(X) → F
′(X′)) and a transformation on the calculated

results (A′(r′)), called the result inverse transform:

A
′ : r

′ −→ r (2)

Therefore we shall have:

r = F(X) = A
′(F′(A(X))) (3)

Although the above equation should hold for the secure in-

formation fusion system, in some cases, the system is de-

signed in a way that the secure information algorithm ap-

proximates the intended result:

r = F(X) ≈ A
′(F′(A(X))) (4)

This result inaccuracy might be mandatory to improve col-

lusion resistance of the system.

The most important role of the anonymizer is to trans-

form the information from the normal or definite space,

where values are represented in world readable or clear text

format to the anonymous space, where node specific infor-

mation can not be deduced. It is obvious that goal func-

tion anonymity condition is mandatory to make fusion in

anonymous domain possible; however, it does not guaran-

tee nor gives a way for calculation of the fusion function in

the anonymous domain.

For distributed and scalable consensus fusion systems

like sensor networks, the anonymizer should be imple-

mented as a localized anonymization transformation as

well. Hence we have: x′i = Ai(xk) where xk ∈ N ′i for

each node.

After the anonymization phase, information fusion takes

place. According to the anonymous space properties,

changes in fusion function might be required. A good

heuristic for finding the proper fusion function over anony-

mous space is based on the mapping of the operators in def-

inite space to the operators in the anonymous space. Obvi-

ously, the best anonymizer in terms of simplicity is the one

that does not affect the fusion function. Such anonymiza-

tion transforms would also eliminate the need for result in-

verse transform function. Figure 1-b illustrates BIFF phases

and compares it with the classical information fusion model

(figure 1-a).
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Figure 1. Information Fusion: a) Classical In­

formation Fusion Model and b) Blind Informa­

tion Fusion Framework (BIFF).

In a classical model which satisfies the conditions dis-

cussed before, each node has its own initial value at first,

then it goes through the fusion process, modeled by F(X).
This may incur calculating an iterative function of its own

and neighbors’ values. Finally each node converges to the

correct results (r). In BIFF, before going through the fusion

process, there is an anonymization phase (A(X)), where

each node transforms its initial value to a new value which



might be a function of its own, or its own and other mem-

bers’ initial values.

The case in which the local anonymization transform,

Ai(xk), is only a function of the node’s initial value (i.e.

k ∈ {i}) seems straight forward since no information ex-

change is required prior to fusion. Nevertheless, one may

raise a question on how Ai(xk) may work when informa-

tion from other members is required. In the latter case, ob-

viously, the nodes do not communicate their initial value,

but a variation of it or just provide each other random num-

bers. This variation may depend on the goal function, and

taking the transformed fusion function (F′(X′)) and result

inverse transform (A′(r′)) into consideration. The Random

Projections Method[5] which will be discussed in the suc-

ceeding sections is an example of this model.

Even when the goal function anonymity condition holds,

there is no guarantee for maximum robustness of the con-

sensus fusion function. In fact the goal function anonymity

condition is a primary condition and only guarantees robust-

ness against only one adversary. The actual robustness of

the system against collusions depends on the nature of the

fusion function itself. For example, as we will see, the con-

sensus averaging function is intrinsically robust to not more

than n−2 colluding nodes. In order to clarify this point, let

us model the set of possible values each node can have as

an n dimensional space and call it information space. The-

orem 1 and its succeeding corollary explain the relation of

the fusion function properties with collusion resistance.

Theorem 1. Assuming an n dimensional information

space, any k dimensional consensus fusion function selects

a n−k−1 dimensional sub-space of possible initial values

for each node.

Proof. Assuming each node has only a single real value as

the input of the fusion function, let us arrange these values

to an ordered n-tuple or a 1 × n vector. The information

space, which is the set of all possible values of this vector is

an n dimensional space. Before the fusion, as we assumed,

each node has only one value; hence, there are n − 1 un-

knowns to each node if she is going to guess others’ value.

A k dimensional consensus fusion function means that

the results of the consensus fusion is a 1×k vector or analo-

gously k one dimensional fusion functions. Generally, each

one dimensional fusion function is a function of n variables.

Assuming the result of the function is known, each function

turns to an equation with n variables. Hence, a k dimen-

sional fusion function defines a system of k equations of n

variables after the fusion. Here we assume that all the equa-

tions are independent. This is a logical assumption since de-

pendence among the equations leads to dependance among

the results of the fusion function. This means that some

of the fusion results can be obtained from the others and

therefore, there is no reason to include them in the fusion

process.

In order to guess the initial values of all the nodes, each

node has n − 1 unknowns and k equations. That is, the di-

mensions of the unknown space is reduced by k after the

fusion for each node as the possible initial values must sat-

isfy k equations. Consequently, a n − k − 1 subspace of

the n dimensional unknown space is left after the fusion for

each node.

Corollary 1. Assuming an n dimensional information

space and a k dimensional consensus fusion function over

it, collusion of at least n − k nodes is mandatory to exactly

reveal all nodes information.

It must be noted that corollary 1 states the upper bound

since the complexity of solving the equations based on the

fusion function is not considered in theorem 1. Also, the-

orem 1 gives the possible answer space and not the proba-

bility distribution function (PDF) over this space. This PDF

depends on the PDF of the nodes’ information as well as the

fusion function. Consequently, the bound given by corol-

lary 1 might be relaxed for estimation and statistical attacks.

As an example for corollary 1, let us consider n nodes

and the simple multiplication fusion function: r =
∏

i xi.

The fusion function chooses an n − 2 dimensional sub-

space of the n dimensional information space for each node.

Hence, collusion of n − 1 nodes or analogously knowing

n − 1 xis will lead to exactly finding the unknown xi.

The intrinsic collusion robustness of a consensus fusion

over an n dimensional information space is therefore n −
k − 1, where k is the number of the bounds implicated by

the fusion function. Consequently, for any consensus fusion

function, the number of bounds put by the fusion function

reduces the level of collusion resistance of the system.

Based on the above discussion, the goal function

anonymity condition can be extended to the goal function

anonymity order concept. We define the goal function

anonymity order of a fusion function as the number of inde-

pendent variables the consensus goal function leaves over

the information space minus one. This parameter gives an

upper bound for collusion resistance level in an exact secure

consensus fusion scheme which can be met regardless of the

nature of the fusion function and neglecting the complexity

of finding the inverse fusion transform. For example, as-

suming the fusion function calculates k independent linear

functions in a network of n members. Generally, knowledge

of n − k of the member information is enough for calcula-

tion of the other k.

The upper bound given by corollary 1 is for simple cases

(such as linear ones) where reversing the fusion function has

polynomial complexity; nevertheless, if the fusion function

belongs to the P class while the reverse problem belong to

the NP class, the node information might not be recoverable

even in case of n− 1 colluding nodes. Although not clearly



stated, some methods for distributed calculation of group

digital signature over an ad hoc network are examples of

such fusion functions[1].

Regardless of the complexity of the fusion function, the

anonymizer can achieve anonymization in two fundamen-

tally different ways:

• Non-deterministic anonymization or Noisification:

Introduce new, possibly random, information to the

system. This new information is regarded as noise

since it is unwanted and may affect the accuracy of

the results. The anonymizer must be designed in a

way that the ratio of the effect of the introduced noise

in the results to the effect perceived by the attacker is

minimized. The effect of the noise can be interpreted

as loosening the bounds put by the consensus fusion

function. In this case, the upper bound of the collu-

sion resistance can be increased. However, the final

result will suffer from steady-state error as the effect

of the noise can not be completely eliminated. The ra-

tio of the perceived error by the attacker to the error

in the results (steady-state error) is an important factor

and modeled by the Network Processing Gain (NPG)

in [7].

• Information Shuffling or Decomposition: Decom-

pose the member information into shares and shuffle

the shares between the fusion party in a way that the

local aggregate of the shares can be fused for the re-

sults. This method just gives obfuscation, mutual pri-

vacy and anonymity but no increase in collusion resis-

tance. Nevertheless, it can have no steady-state error,

since no new information is introduced to the system.

From the above discussion, if the fusion function shows

good collusion resistance properties the second method is

preferred since it is steady-state error free. This deci-

sion can be made considering anonymity order of the fu-

sion function as well as its complexity. For reversible fu-

sion functions, if a collusion resistance level more than the

bound given by the goal function anonymity order is re-

quired, the first method is the way.

Modeling the consensus fusion function as a filter over

the information, the first method can be explained as adding

noise to the input whose effect will be eliminated by the

zeros of the fusion filter. Hence, we call this method the

noisification method.

BIFF can be more understood considering common vot-

ing system where people cast their ballots to the ballot box.

The desired property of the voting system is keeping each

voters opinion private through anonymous ballots which

only reflect the voters opinion; however, as the authenticity

of the votes must be approved, each ballot shall be cast by a

person and in fact, the real anonymization takes place in the

ballot box. In BIFF, the anonymization transform plays the

role of the ballot box.

BIFF can be adopted for secure consensus fusion over

sensor networks as its suitable to be joined with locally

implemented fusion functions. Implementing anonymizer

based on the injected noise can specially fit computation

constrained networks as random number generation is not

a costly operation and most of the times readily available.

For the locally implemented fusion functions algorithm 1

can be used as a general approach based on BIFF.

Algorithm Blind Fusion

Input: xi (node information)

Output: ri (fusion result)

Main Procedure

Step 1: Anonymization

Decompose xi to xijs and/or Calculate side information or noise (νi)

Communicate the shares to the neighbors if required

Calculate the anonymized information:

x′

i ← Ai(xk) ≡ Ai(xki, νi) for k ∈ N ′

i

Step 2: Fusion

Go through the altered fusion function (possibly multiple rounds):

r′

i ← f
′

i
(x′

k) for k ∈ N ′

i

Step 3: Result Calculation

Calculate the results through the inverse anonymization transform:

ri ← A′(r′

i)
End

Algorithm 1. Blind Fusion Algorithm for node i

3.3 Examples

In this section we formulate two secure consensus aver-

aging methods proposed by Kefayati et al. [6, 7] accord-

ing to BIFF. We briefly introduce each method and give the

BIFF based notation, i.e. definition of A(X), A′(r′) as well

as Ai(xk) and the others.

Since both methods are designed to be fusion method

independent, that is, to work with any fusion function

which realizes consensus averaging, they do not require any

change in the fusion function. Therefore, F′(X′) = F(X′)
or simply:

r =
1

N

∑

i

xi =
1

N

∑

i

x′i (5)

This means that for both methods A(X) is designed in a

way that averaging function is the same over both definite

and anonymous spaces. The advantage of such an approach

is two fold: first it does not require any change in the fusion

function which simplifies the implementation and increases

flexibility of the system. Second, it eliminates the need for

result inverse transform function, i.e. r
′ = r.

3.3.1 Secure Consensus Averaging based on Random

Offsets Method:

The main idea behind Random Offsets Method (ROM)[7]

is that, for large networks, the consensus averaging fu-

sion function is the minimum variance unbiased estimator



(MVUBE) of the mean value of xis, assuming they are i.i.d.

random variables, or in the other words:

lim
n→∞

r = lim
n→∞

x̄ = lim
n→∞

1

N

n∑

i=0

xi = E{X} (6)

If each node adds a randomly chosen offset, oi, to its initial

value, and assuming that the offsets are chosen from a zero

mean distribution we will have:

r = E{X + O} = E{X} + E{O} = E{X} (7)

For finite number of nodes in the network, however, there

will be an error in the final result. This error is inversely

proportional to the number of nodes in the network[7].

From BIFF point of view anonymizer can be defined as:

X
′ = A(X) = X + O (8)

where X = [x0, x1, ..., xn]T , O = [o0, o1, ..., on]T . Analo-

gously we have:

x′i = Ai(xk) = xi + oi (9)

It must be noted that the each offset is only known to the

corresponding node itself. According to BIFF, ROM is

based on the noisification methodology. ROM introduces

new information to the system which helps it to obfuscate

the original information and then exploits the properties

of the fusion function to eliminate the effect of the noise.

From another point of view and according to equation 4, by

choosing an anonymous space for which the fusion results

are approximated by the original fusion function much bet-

ter than the original information, ROM achieves its goal in

providing a means for mutual confidentiality.

According to BIFF, methods which introduce new infor-

mation to the system can achieve a higher level of collusion

resistance. Considering the linear bound by the consen-

sus averaging fusion function, the intrinsic collusion resis-

tance level of this fusion function is n − 2. However, ROM

achieves n−1 collusion resistance since it uses noisification

methodology. This is not only more than the intrinsic col-

lusion resistance level of consensus averaging function but

also the maximum achievable level of collusion resistance

for n nodes.

3.3.2 Secure Consensus Averaging based on Random

Projections Method:

Random Projections Method (RPM)[6] is based on informa-

tion decomposition idea presented in the previous section.

According to RPM, before the fusion process, each node

decomposes its initial value to a summation of n′i randomly

chosen numbers, namely xijs, in a way that
∑

j xij = xi.

These numbers or random projections are then communi-

cated among the neighbors. It must be noted that there are

n′i random projection and n′i − 1 neighbors, that is, each

node keeps one random projection as self projection for it-

self denoted by xin′

i
. After all the nodes are done with the

projection exchange process, each node calculates its trans-

formed initial value according to the following equation:

x′i =

ni∑

j=0

xji + xin′

i
(10)

Finally, all nodes go through the consensus averaging

process using x′i as their initial value. Obviously, the result

is exactly the same as the intended results since the summa-

tion is done over all the random projections and divided by

the number of the nodes in the network.

In RPM, formulation based on BIFF can also give a very

simple proof of convergence. Before defining A(X) we

first define an auxiliary matrix called random projections

matrix denoted by R whose elements are the random pro-

jections communicated among the nodes. In other words,

rij is the random projection sent from the node i to the node

j. As projection exchange is done among the neighbors, for

the nodes whom are not direct neighbors, we have rij = 0.

Obviously, rii is the self projection of the node i. According

to this notation we have:

X = R.1 (11)

in which 1 is |V | element column matrix of ones, i.e.

[1, 1, . . . , 1]T . Equation 11 models the decomposition

process. Aggregation can also be expressed in terms of R

as:

X
′ = A(X) = R

T.1 (12)

which formulates A(X). Each row of X
′ in equation 12

gives the corresponding local anonymizer, A(xk), which

is given in equation 10 as well. The convergence of the

method can also be checked based on R matrix as:

r′ =
1

N
1
T.X′ =

1

N
1
T.RT.1 =

1

N
(1T.X)T = r (13)

As RPM is an exact method for secure consensus averag-

ing, according to BIFF, its maximum degree of collusion

resistance is at most n − 2 which is confirmed by [6].

4 Conclusion and Future Work

In this paper we introduced a general framework for se-

cure information fusion over sensor networks called Blind

Information Fusion Framework (BIFF). Our focus was

mostly on consensus information fusion on cooperative net-

works. The most challenging issue addressed in BIFF is

to maintain node information privacy while making the in-

formation fusion viable in an honest-but-curious adversary



model. Our solution to this problem is described as trans-

formation of the information from the normal space to the

anonymous space where the nodes’ information can not

be deduced and implementation of the fusion function in

the anonymous space. The most important requirement of

the anonymous space is its ability to hide node informa-

tion while making the fusion possible. We also defined

the collusion resistance level of a fusion function as “the

maximum number of nodes whose collusion can not reveal

other node(s)’ information”. After discussing some prop-

erties of BIFF and their relations with the fusion function,

we analyzed collusion resistance of two major families of

anonymization transforms. Also, two methods proposed for

secure consensus averaging were formulated and discussed

in BIFF as examples.

We believe that BIFF needs more work to mature. We

are considering other properties of the anonymization trans-

forms and their corresponding anonymous spaces as our

major part of our future work. These properties include

collusion resistance, flexibility and scalability for imple-

mentation in various kinds of sensor networks, especially

the sensitivity of the anonymization to sparse connectiv-

ity. Our min focus is on finding a fusion function inde-

pendent anonymizer suitable for implementation over ca-

pability limited sensor networks. Extension of BIFF to

non-cooperative networks and the effect of non-cooperative

nodes on performance and security of the fused information

is left for our future studies as well.
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