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Abstract—In this paper we consider the issue of energy efficiency 
in random access networks and show that optimizing 
transmission probabilities of nodes can enhance network 
performance in terms of energy consumption and fairness. First, 
we propose a heuristic power control method that improves 
throughput, and then we model the Utility Constrained Energy 
Minimization (UCEM) problem in which the utility constraint 
takes into account single and multi node performance. UCEM is 
modeled as a convex optimization problem and Sequential 
Quadratic Programming (SQP) is used to achieve optimal 
transmission probabilities. Numerical results show that our 
method guarantees fairness, reduces energy consumption and 
enhances lifetime of such networks. 

Keywords-energy efficiency; slotted Aloha; utility function; 
convex optimization 

I.  INTRODUCTION 
Energy efficiency of wireless networks has received 

considerable attention in recent years. Especially, in sensor 
networks, nodes are not rechargeable and lifetime of the node 
is equal to its battery lifetime. It is therefore necessary to avoid 
any waste of energy and ensure network longevity. On the 
other hand, protocols of these networks should be simple and 
distributed and thus, random access protocols are frequently 
used in such networks. Slotted Aloha [1] is the basic and most 
studied random access in which nodes transmit their packets 
with certain probability in every time slot. Usually collision 
model is used to analyze performance of the protocol [1]. In 
this model, it is assumed that when two packets arrive at the 
receiver, collision occurs and none of them can be decoded 
with negligible error. However, this model is pessimistic and 
provides a lower bound on system performance, since in many 
cases the packet with largest power can capture the channel and 
be received correctly.  

Several works (e.g. [2], [3], [4]) have studied the capture 
effect and used the power control to intensify it. These schemes 
usually suppress the weak signals and enhance the strong ones 
in order to increase throughput of the network. However, it is 
clear that such an approach will result in unfairness among 
nodes. For example, an algorithm proposed by Metzner[2] 
reduces transmitter power of far nodes, in order to enhance 
throughput, but will simultaneously diminish success 
probabilities of such nodes. In contrast, if the power control 
algorithm tries to achieve fairness among nodes by improving 
weak signals, capture probability and network throughput will 
be sacrificed.  

General analytic framework for fairness in multi-access 
wireless channels was first proposed in [5] where it was shown 
that defining fairness in these channels is equivalent to 
specifying a utility function, and the logarithmic utility was 
used to provide proportional fairness. If we force the utility 
function to be greater than a threshold, we can expect a level of 
fairness among nodes in addition to acceptable network 
throughput. Fairness has been also addressed in wireless sensor 
networks in order to ensure that data collection from all regions 
of the network [6]. 

In this paper, we use power control and optimize 
transmission probabilities in order to minimize energy 
consumption of the network and provision fairness. Our 
heuristic power control scheme increases capture probability 
without affecting fairness, and the computed optimal 
transmission probabilities guarantee fairness and maximize 
energy efficiency of the network. Most of the earlier studies on 
random access have only focused on network throughput and 
few of them have considered fairness. In addition, to the best 
knowledge of authors, our work is the first one that minimizes 
energy while ensuring fairness among network nodes. In [5], 
[7], [8], and [9], fairness is extensively studied but none of 
them evaluated energy consumption of nodes. The multi-group 
model is used in [7] and a retransmission control policy that 
enhances fairness is suggested, although the optimality of the 
algorithm was not proven. In [8] and [9], optimal transmission 
probabilities were found to achieve fairness but only collision 
model was used and energy consumption was ignored. Energy 
efficiency of the network was considered in [3], [10], and [11], 
however, they have mainly investigated throughput-energy 
tradeoff in Aloha networks without taking fairness into 
account.  

The structure of this paper is as follows. In section II we 
introduce system model and main assumptions of the work. 
Our power control and node classification method is described 
in section III. We formulate our optimization problem as a 
function of transmission probabilities in section IV and prove 
its convexity. In section V we propose a method for reducing 
messages sent from base station to nodes and present the final 
algorithm. Numerical results and conclusions are given in 
sections VI and VII, respectively. 

II. SYSTEM DESCRIPTION 
We consider a system in which a finite number of nodes 

desire to transmit their packets to a Base Station (BS) (Fig. 1). 
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The nodes use slotted Aloha in which channel is divided into 
timeslots with duration T which is equal to the time required to 
send a packet. As we will discuss in section III, nodes are 
divided into M groups, there are ni nodes in group i and node j 
of group i is denoted by (i, j). Each node transmits in one slot 
with probability qij (called transmission probability) and the 
amount of energy it uses to transmit a packet is Eij. Similar to 
[10], we suppose that transmission and retransmission rates are 
the same for all nodes. It is also assumed that BS estimates 
channel gains (Gij) from received packets. Thus, the 
optimization algorithm in the receiver incorporates channel 
state information of the current slot. This implies independency 
of the algorithm from distribution of nodes and statistical 
characteristics of channel.  

A feedback channel is assumed to exist from BS to each 
node, and is used for acknowledgment, synchronization and 
controlling transmission parameters of nodes. It is assumed that 
the network changes very slowly, and coherence time of 
channels is large. Therefore, updating the node parameters does 
not take place frequently and the effect of this feedback on total 
energy consumption and throughput is negligible. We have 
also assumed that when there is no power control, all nodes use 
the same power, P, to transmit a packet. In this work, we do not 
take stability and delay issues into account and assume that 
they are controlled by setting appropriate source rates at higher 
network layers.  

III. CAPTRE EFFECT AND POWER CONTROL 

A. Perfect Capture Model 
If Signal-to-Interference-plus-Noise-Ratio (SINR) of a 

received packet in slotted Aloha network is above a certain 
threshold and appropriate coding is used, reliable 
communication is possible [12]. If we denote interference and 
noise terms by I and N, respectively, and use fixed type of 
modulation and coding, the packet with power P can be 
received successfully if: 
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where G  is the channel pathgain and β  is the SINR threshold. 
It means that a packet will capture the channel if its SINR is 
above a specific threshold. Noise term is neglected in our 
analysis since interference among nodes is the most important 
factor in multi-access wireless networks. Similar to [2], we also 
assume that a packet would be received correctly if and only if 
it has the strongest power among all of the received packets. 
This is called perfect capture model and is close to the SINR 
threshold model for our system because:  

• Our power control (which we will subsequently describe 
in this section) classifies nodes and ensures that received 
power from nodes of different classes is quite different. 

• Since we are looking for an energy efficient system, 
transmission probabilities should be set small enough in 
order to avoid unsuccessful transmissions. Therefore, it 
is less probable that sum of the interferences caused by 
packets with low power exceeds the strongest packet. 

 
In addition, numerical results of section V confirm this 

claim and show that performance of our system with perfect 
capture model is close to the case that we used SINR threshold 
model. We should insist here that the assumption of perfect 
capture model is highly related to power control algorithm, and 
is not necessarily applicable in general. 

B. Power Control 
Our power control algorithm first classifies nodes into M 

groups according to their channel gains. To this end, two 
thresholds are assigned for the channel gains of nodes in each 
group. For example, the node (i, j) is in group i if its gain Gij 
satisfies:  

1i ij iG G G+ < ≤  (2) 

Power control algorithm, (3), ensures that packets of nodes 
in one group are received with the same power at BS. 
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In order to exploit capture effectively, and increase 
probability of successful transmission for nodes with higher 
channel gain, we should set proper threshold levels. We set 
thresholds as (4) to insure that when two packets are 
transmitted simultaneously from group i and k (i<k), the packet 
from group i will be received correctly:  

1
i

i
G

G
β+ =  (4) 

As an example, suppose that nodes are distributed 
uniformly in a circle and channel gains depend only on the 
distance of nodes from BS (Fig. 1). Accordingly, gain 
thresholds are equivalent to distance thresholds and group i 
consists of nodes that their distances to BS satisfies di<d<di+1.  

IV. OPTIMAL TRANSMISSION PROBABILITIES 
Utility Constrained Energy Minimization (UCEM) problem 

can be formulated as follows: 
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Figure 1.  A typical network with 50 nodes and 20m radius 
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where qij and Eij =Pij qij are transmission probability and 
average energy consumption of the node (i,j), Uc is the 
threshold for acceptable value of utility function and ni is 
number of nodes in group i. In order to solve this problem, it is 
assumed that power of each node is determined earlier by the 
power control algorithm.  

First, we discuss the utility function and obtain its 
maximum value Umax. Similar to some related works [5] and 
[8], we use the logarithmic utility function. In other words, if 
ijx  represents effective rate of node (i,j), then utility function 

of a network with M groups is given by: 
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Since log( )x  goes to negative infinity as x  approaches 
zero, a finite value for this utility function makes sure that 
effective rates of all nodes are above zero. It is also shown in 
[5] that logarithmic utility results in proportional fairness 
among nodes. 

If we denote throughput of nodes by Sij then: 

log( ) log( ) log( )ij p ijx L R S= ⋅ +  (7) 

where L  is number of bits in a packet and 1/pR T=  is  the 
packet transmission rate. Thus, utility function can be rewritten 
as: 

log( )pU U N L R′= + ⋅ ⋅  (8) 
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Since log( )pN LR  is constant, in the rest of paper, we use 
U' instead of U in order to either maximize utility or set a 
threshold for it. According to perfect capture model, a packet 
sent by a node in group i is successfully received if and only if 
no other node in groups 1 to i has sent a packet. Therefore, 
throughput of this node is: 
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and U' is given by: 
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Rearranging terms we have: 
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For convenience we rewrite (12) as: 
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(.)ijϕ  is a concave function due to the fact that (14) is not 
positive when there is at least one node in group M. 
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Thus, U' is concave because it is the sum of concave 
functions [13]. This result implies convexity of UCEM 
problem since the objective of this problem is a linear function 
of transmission probabilities. There exists a variety of methods 
to solve convex optimization problems. Among them we have 
chosen Sequential Quadratic Programming (SQP) [13] for the 
reason that our variables are bounded and the initial guess is 
not far from the optimal solution.  

V. PROPOSED ALGORITHM 
According to the schemes presented in sections III and IV, 

BS can calculate both transmission powers and optimal 
transmission probabilities of nodes and broadcast these 
parameters. However, it is important to reduce the overhead of 
the messages sent by BS because they should be broadcasted 
every time that network topology changes. Equivalently, 
reducing messages (or message size) will enable us to use this 
algorithm in networks that may vary more frequently. 

First, we show that power control algorithm can work in a 
distributed manner throughout the network. If we assume 
channels are symmetric, nodes can estimate their channel gains 
with beacons transmitted by BS. Therefore, they can use 
threshold levels (which are sent to them at system start-up) in 
order to indicate which group they belong to, and consequently 
set their power levels. In this case, no online feedback is 
needed from BS. 

We can also reduce messages sent by BS for setting 
transmission probabilities at the expense of making some 
calculations in nodes. We will show subsequently that if BS 
only broadcasts the number of nodes in each group and 
Lagrange multiplier, then every node can calculate its unique 
optimal transmission probability. 

The Lagrangian associated with UCEM problem is: 
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By setting 0qL∇ =  and using some algebraic 
manipulation, we get the following quadratic equation which 
should be solved at each node: 
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Since U is concave function of q Lagrangian is strictly 
concave and thus, it has a unique maximum. It is also clear that 
(16) has at least one root in (0,1) because its satisfies the 
following equation: 
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We summarize our algorithm as the following to calculate 
power and transmission probabilities. 

Power and Transmission Probability Selection Algorithm 

Step 1. At the system startup, BS specifies channel 
gain thresholds according to SINR threshold 
and sends them to the nodes. 

Step 2. Both BS and nodes estimate channel gains 
and if it differs from previous values, they 
classify nodes with respect to channel gain 
thresholds. 

Step 3. BS evaluates power values of all nodes and 
initiate step 4. Every node sets its power. 

Step 4. BS solves UCEM problem and determines 
Lagrangian multiplier. BS then broadcasts 
number of nodes in each group and 
Lagrangian multiplier to the nodes. 

Step 5. Nodes set their transmission probabilities by 
solving (16) and choosing the root which is in 
(0,1). 

Power and Transmission Probability Selection Algorithm 

VI. NUMERICAL RESULTS 
We have applied our algorithm to the sample network 

illustrated in Fig. 1, and explored energy-utility tradeoff, 
comparing our method with the case that all nodes have the 
same transmission probabilities (Hereafter we will call the 
latter uniform policy). Parameters used for our numerical 
analysis are given in table 1. 

Fig. 2 shows effective rate of nodes achieved by our 
algorithm. In this figure, nodes are sorted according to their 
distance to BS. It can be seen that numerical results calculated 
by the perfect capture model are close to the results of SINR 
model. Our algorithm is also compared with the uniform policy 
and it is shown that when the same amount of utility is 
achieved, near and far nodes in our algorithm have less 
throughput differences than near and far nodes of the uniform 
policy. 

In order to analyze the tradeoff between utility and energy, 
we have solved UCEM problem and calculated the minimum 
amount of energy consumed for different utility constraint 
values. According to Fig.3a, energy consumption is very 
sensitive to Uc and with small variation of this threshold 

minimum required energy will be reduced to half. Energy 
efficiency of our algorithm is compared with uniform policy in 
Fig.3b and it is observed that our algorithm reduces energy 
consumption by about 10% for all values of Uc. 

 

It is also of importance to examine performance of our 
algorithm in terms of lifetime (parts of Fig. 4). Toward this 
end, we define lifetime of the network as the time when 70% of 
nodes run out of energy. As we expected, the network will have 
greater lifetime for smaller values of Uc (Fig. 4a). It is also 
apparent that our algorithm increases network lifetime in 
comparison with uniform policy (Fig. 4b).  

VII. CONCLUDING REMARKS 
We presented a novel algorithm to enhance energy 

efficiency and guarantee fairness in random access networks. 
Based on simulation results, it has been verified that the 
proposed simple algorithm can reduce energy consumption of 
the network, enhance fairness among nodes, and increase 
network lifetime. 

Although our algorithm has better lifetime characteristics 
than uniform policy, one valuable extension will be to optimize 
transmission parameters in order to directly maximize network 
lifetime. In order to do so, only step 4 of our algorithm will be 
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Figure 2.  Effective data rates of nodes in a sample network  

TABLE I.  SIMULATION PARAMETERS 

Packet Length (L) 1000 bit 

Time Slot (T ) 5msec 

SINR Threshold (β) 6dB 

Channel Gain a (Gij) 20·dij
-4 

Node initial power (P) 200mWatt 

Network Radius (R) 20m 

Number of nodes(N) 50 

Battery Energy (EB) 1000Jouls  

Utility Constraint (Uc) 219 
a. For simplicity we have assumed that channel gains depend only on the distance to BS. 



changed and utility constrained lifetime elongation will be 
solved instead of UCEM. Another approach is to transform 
algorithm into a distributed structure. The results of section IV 
imply that any distributed algorithm with reasonable amount of 
messages will be suboptimal since power of all other nodes and 
number of nodes in each group should be known in order to 
achieve optimal values.   
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Figure 4. (a) Lifetime-utility tradeoff (b) lifetime enlongation of optimal 
transmission probabilities in comparison with uniform policy 
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Figure 3.  (a) Energy-utility tradeoff (b) Energy reduction of optimal 
transmission probabilities in comparison with uniform policy 


