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Abstract—Wired and wireless data networks have witnessed an
explosive growth of inelastic traffics such as real-time or media
streaming applications. Recently, applications relying on layered
encoding schemes appeared in the context of live-streaming and
video and audio delivery applications. This paper addresses the
Network Utility Maximization (NUM) for scalable multimedia
transmission which is relying on layered encoding schemes. Non-
convexity of the NUM problem for such applications makes dual-
based approaches incompetent, whereby achieving optimality
proves quite challenging. We adopt the staircase utility function
and formulate the underlying optimization problem. To tackle the
non-convexity of the problem, we use a smooth approximation of
the staircase utility function and propose a dual-based distributed
algorithm for rate allocation and bandwidth sharing in such
scenarios. Numerical results show that the proposed algorithm
achieves suboptimal yet efficient solution.

I. INTRODUCTION

Over the past few years, the usage of multimedia appli-
cations in computer networks has been growing explosively.
Recently, applications with streaming traffic such as live-
streaming over peer-to-peer and wireless ad-hoc networks are
emerged and expected to continue growing. Thus, in the course
of recent years, the research community has witnessed the
emergence of new demands for QoS-provisioning in different
multimedia applications. In order to tackle this issue, many
technical challenges have to be addressed in the two areas of
video coding and networking.

In the video coding area, QoS-provisioning is efficiently
dealt with in the context of video adaptation paradigms [1].
The problem of video adaptation has been widely addressed
through a number of approaches, such as Scalable Coding [2],
[3], Transcoding [5], [6], and Summarization [7]. In Scalable
Video Coding, the objective is to enable the encoding of a
high-quality video bitstream that contains one or more valid
and decodable subset bitstreams. Transcoding is normally
referred to as techniques where a compressed media bitstream
format is converted into another format. Video Summarization
schemes through content analysis and optimization select a
subset of frames from the video sequence to form a concise
representation of the sequence, while incurring as small of a
loss as possible.

In the area of networking, rate allocation is at the nexus of a
wide variety of paradigms, whose boundaries extents different

scenarios ranging from resource-constrained networks to QoS-
aware ones. This also has been the issue of primary concern in
the research community of multimedia applications. Following
the seminal work by Kelly et al. [8], the optimization flow
control approach was proposed by Low et al. [9], in which the
optimal rate allocation of a wired network under elastic traffic
was modeled and led to a dual-based distributed algorithm
for rate allocation both in synchronous and asynchronous
environments. Within the previous decade, the work by Low et
al. was followed by the network research community and led
to a more general optimization framework known as Network
Utility Maximization (NUM) and its generalized form, GNUM
([10] and references therein). The underlying assumption of
these works is that the network traffic is elastic, whose
characteristics can be modeled by a strictly concave utility
function. Such utility functions, make the problem convex and
thereby tractable for optimality analysis.

On the other hand, Internet has witnessed an explosive
growth of inelastic traffics such as those arising in real-time or
media streaming applications. Such applications are relying on
tight performance characteristics, in terms of rate (bandwidth),
delay, jitter, etc., which make the utility function non-concave
[11]. Non-concave utility functions result in non-convex NUM
problems, whose analysis proves quite challenging. So far,
only few works have tackled the non-convex NUM problems,
e.g. [12]-[14]. In [12], the authors adopted sigmoidal-like util-
ity function that is an appropriate choice for the utility of rate-
adaptive multimedia applications, and proposed a distributed
admission control approach for such utilities, called “self-
regulating” heuristic. Hande et al. in [13] investigated the
optimality conditions for the distributed iterative dual-based
algorithm to converge to global optimal despite using non-
concave utility functions. In [14], an efficient but centralized
method based on sum of square approach is developed to
compute the global optimal rate allocation for types of non-
concave utility functions that can be transformed into polyno-
mial functions.

Contemporary to the research studies carried out in the
context of NUM, a lot of recent studies have dealt with the
inelastic multimedia applications through modeling the traffic
characteristics of such applications. These studies appeared
in different forms. Huang et al. [15], proposed a resource



allocation solution for multi-user video streaming over cellular
wireless networks. They developed a NUM framework with a
resource pricing algorithm via previous well-established dual-
based algorithms. The resource price is obtained in turn, is
used to derive source content adaptation to each user, using
video summarization techniques [7]. In [16], a content-aware
distortion-fair networking framework with joint video source
adaptation and network resource allocation is developed. A
basic difference in this work is that an explicit utility function
for sources is not considered. Instead, a content-aware time-
varying utility function is chosen that is different per each
frame as well as per video content. Based on the idea of
dropping less important frames, a distributed iterative algo-
rithm is proposed to achieve min-max distortion fairness. The
main superiority of this work is taking into account the special
characteristics of video content such as dependency between
frames.

In this paper, our focus is on the rate allocation for mul-
timedia applications with scalable encoding based on NUM
approaches. Today, a plethora of such applications exist in
video and audio delivery systems and are relying on layered
encoding schemes [2], [3]. For scalable multimedia applica-
tions, rate allocation is limited to distinct levels of utility,
i.e. the utility is increased only when a higher layer can be
delivered due to increase in the available bandwidth. Thus, the
ideal utility for these applications is in the form of a staircase
function, which is shown in Figure 1 [4]. In order to deal with
the nondifferentiable and non-concave behavior of the staircase
utility, we introduce multimodal sigmoid approximation as a
smoothed and well-behaved utility function and to remedy
nondifferentiability of the staircase utility. Moreover, we aim
at approximating the underlying NUM in order to come up
with more amenable formulation, and then propose a dual-
based distributed algorithm as the solution to it. To the best
of our knowledge, this is the first work that addresses NUM
problem for scalable multimedia transmission. Numerical re-
sults present a proper validation of our endeavor in achieving
a suboptimal yet efficient solution.

The rest of the paper is organized as follows. Section II
describes the network model and utility approximation. Sec-
tion III is devoted to formulate the underlying NUM problem.
Section IV investigates the optimality condition and optimal
solution to the NUM. The optimal dual-based distributed
algorithm is presented in Section V. Numerical results are
presented in Section VI and VII concludes the paper and
outlines some future directions.

II. SYSTEM MODEL

A. Network Model

We consider a network consisting of a set of sources denoted
by S = {1, . . . , S} and a set of unidirectional links, denoted
by L = {1, . . . , L}. Let xs and cl be the source rate for source
s and capacity of link l, both in bps, respectively. Without loss
of generality, we assume that source rate of source s is limited

so as to certify

0 < ms ≤ xs ≤Ms <∞ (1)

where ms and Ms denote the minimum and maximum rates
for source s, respectively. We assume that source s, when
submitting at rate xs bps, attains a utility function Us(xs),
which models its benefit.

We associate with source s a path, i.e. a set of links
L(s) ⊆ L, that determines the links that source s passes
through. Similarly, we define S(l) ⊆ S, to be the set of sources
traversing link l. For the sake of simplicity, we define the
routing matrix as R = [Rls]L×S , where Rls is defined as

Rls =
{

1 if source s passes through link l
0 otherwise (2)

B. Utility Model

As stated in Section I, the utility function of such ap-
plications can be ideally characterized using a non-concave
and non-differentiable utility function referred to as staircase
utility function, which is shown in Figure 1 in solid line [4].
Non-concavity of the staircase utility functions implies that the
conventional theory of Network Utility Maximization (NUM)
cannot be used for such functions. In order to deal with such
non-concave and non-differentiable utility functions, we use a
smoothed approximation of it. Figure 1 shows the idea behind
such an approximation. In this figure, the curve in dashed
line represents the smoothed approximation of the staircase
function.

In order to construct such a smoothed approximation, we
divide its domain into nonoverlapping intervals, so that a step
transition occurs within the midpoint of each interval. The
step transition i, i.e. the part of the curve in which utility
function jumps from level i, (i.e. U(x) = i), to level i+1, (i.e.
U(x) = i + 1) is smoothed and approximated by a sigmoid-
like function, whose point of inflection corresponds to U(x) =
i+1
2 .
A sigmoid-like function has been well studied in the field of

neural networks. The most commonly used form of sigmoid-
like function is the logistic function defined as

F (x, α, β) =
1

1 + e−α(x−β)
(3)

It is easy to show that β is the inflection point of F (x), i.e. for
x < β, F (x) is convex, and for x > β it is concave. Moreover,
α > 0 is a parameter that determines the sharpness of its curve.
It’s worth mentioning that α must be chosen sufficiently large
so as to effectively capture the sharp transition of an increase
in the utility level.

Using the notation for the sigmoid-like function introduced
above, we then represent the approximation shown in Figure
1 in dashed line. Recall the interval division of the domain
introduced above. Then, for the step transition i, i.e. jump
from U(x) = i to U(x) = i+ 1, we have,

Ũ(x) = F (x, α, ki) + i; x ∈
[
ki− k

2
, ki+

k

2
]

(4)



where Ũ(.) denotes the approximation to the original utility
function and [ki− k

2 , ki+
k
2 ] is the interval in which transition

i occurs. It’s worth mentioning that k is the required rate
increase to advance the utility U by 1. Hence, 1/k can be
thought of as the slope of the straight line passing through the
midpoint of step transitions.

Combining all of the intervals, we get

Ũ =



F (x, α, k) + 1 x ∈ [k − k
2 , k + k

2 ]
.
.
F (x, α, ki) + i x ∈ [ki− k

2 , ki+
k
2 ]

.

.
F (x, α, kN) +N x ∈ [kN − k

2 , kN + k
2 ]

(5)

where it is assumed that the domain is divided into N equal
intervals, corresponding to N encoding layer.

In statistics, a sigmoid-like function, which is in possession
of a single point of inflection, is usually referred to as
unimodal function. Our approximated staircase utility function
is comprised of several sigmoid-like functions, and thereby
has several points of inflection. Thus, it is a multimodal
function as opposed to the unimodal case. In this respect, we
refer to this approximation as the multimodal sigmoid. The
multimodal sigmoid approximation presented above is non-
differentiable in general; however, if α is chosen sufficiently
large, discontinuity gap between contiguous steps vanishes and
thereby makes it continuous.

Sources in the network may demand for different QoS
requirements; hence, it makes sense that each source s, would
advance its utility according to its own ks factor, which may
differ from the others. Moreover, each source s is assigned a
positive weight ws which can be used to address its priority in
rate allocation. Such weights are normalized so as to satisfy∑
s ws = 1. Therefore, the (approximated) utility function of

source s is
Ũs(xs) = wsŨ(xs, α, ks) (6)

where Ũ is defined by (5) and ks and α were omitted from
the notation.

III. PROBLEM FORMULATION

In this paper, we mainly focus on modeling a convex
optimization as an approximation to the non-convex NUM
arising in scalable multimedia applications. Thus, for the sake
of simplicity, we consider the simplest form of the NUM,
i.e. the optimization flow control problem, introduced in the
seminal work of Low et al. [9]. The objective of such a simple
NUM is to choose source rates so as to maximize the aggregate
utility of all sources while satisfying capacity constraints, as
follows

max
x∈X

S∑
s=1

Ũs(xs) (7)

subject to: ∑
s

Rlsxs ≤ cl; l ∈ L (8)
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Fig. 1. Staircase Utility Function (solid line) and Its Multimodal Sigmoid
Approximation (dashed line)

where X = X1×X2× . . .×XS denotes the Cartesian product
of all rate domains Xs = [ms,Ms]. In order to come up
with a more amenable formulation, we consider the following
optimization problem

max
x∈X

S∑
s=1

log Ũs(xs) (9)

subject to: ∑
s

Rlsxs ≤ cl; l ∈ L (10)

The following theorem shows that the problem (9)-(10)
approximates the problem (7)-(8).

Theorem 1: The optimization problem (9)-(10) approxi-
mates the problem (7)-(8).

Proof: Taking the logarithm of the objective of (7) yields

max
x∈X

log

(∑
s

Ũs(xs)

)
(11)

Since log(.) function is monotone increasing, maximizing
(11) is equivalent to maximizing (7), and thereby problem (11)
is equivalent to problem (7)-(8). On the other hand, log(.) is
a concave function, for zs > 0, we have

log(
∑
s

wszs) ≥
∑
s

ws log(zs) (12)

provided ws ≥ 0 and
∑
s ws = 1. Substituting utility

functions, Ũs = wsŨ into (12), we get

log(
∑
s

wsŨ(xs)) ≥
∑
s

ws log Ũ(xs) (13)

Therefore, the transformed objective of (7) is lower bounded
by the R.H.S of (13). Thus, to obtain an approximate to
problem (7), we choose its lower bound as the objective
function.



We defer solving the optimization problem until the next
section.

IV. OPTIMAL SOLUTION

A. Deriving Primal Optimal

We can solve the optimization problem (9)-(10) using dual-
based approach1. However, compared to the conventional
methods for the NUM proposed so far [10], it demands for
partly more elaboration. We obtain the dual problem using the
definition of Lagrangian. The Lagrangian of (9) is given by

L(x, µ) =
∑
s

log Ũs(xs)−
∑
l

µl

(∑
s

Rlsxs − cl
)

where µl is the positive Lagrange multiplier associated to
capacity constraint (10) for link l and µ = (µl, l ∈ L) is
the vector of Lagrange multipliers.

The approximated optimization problem introduced above
is non-convex. In order to come up with a convex formulation,
we use the following transformation

x̃s = eαxs (14)

Since this transformation is monotonic increasing, maximizing
L(x̃, λ) is equivalent to maximizing L(x, λ). Rewriting the
Lagrangian with this transformation, we get

L(x̃, µ) =
∑
s

log Ũs(x̃s)−
∑
l

µl

(∑
s

Rls
α

log xs − cl
)
(15)

We denote the primal-optimal point of the approximated
problem by x∗ = (x∗s, s ∈ S). Based on KKT Theorem [17],
at optimal point the following conditions must be satisfied:

∇x̃L(x̃, µ)|(x̃∗,µ∗) = 0 (16)∑
s

Rls
α

log x̃∗s ≤ cl; l ∈ L (17)

µ∗l ≥ 0; l ∈ L (18)

µ∗l

(∑
s

Rls
α

log x̃∗s − cl

)
= 0; (19)

where 0 is a vector, all of whose element is zero.
Substituting (15) into (16) yields

∂L

∂x̃s
=

d

dx̃s
log Ũs(x̃s)−

1
αx̃s

∑
l

Rlsµl (20)

=
Ũ ′s(x̃s)
Ũs(x̃s)

− 1
αx̃s

∑
l

Rlsµl

=
F ′(x̃s, α, ksis)

F (x̃s, α, ksis) + is
− 1
αx̃s

∑
l

Rlsµl = 0

1Due to space limit, we relegate the proof of the convexity to our future
works.

where it is assumed that x∗s falls within the isth interval.
Substituting F (x̃s, α, ksis) into the above result and doing
some algebraic manipulations, we get

Asi
(x̃s+Asi)2

x̃s
x̃s+Asi

+ is
− µs

αx̃s
= 0 (21)

where µs =
∑
lRlsµl and Asi = eαksis . Further simplifica-

tion of (21) yields

Asi
(1 + is)(x̃s +Bsi)(x̃s +Asi)

=
µs

αx̃s
(22)

where Bsi = is
is+1Asi. The above result leads to the following

quadratic equation Obtaining x∗s demands for solving (21).

x̃2
s +

(
Asi +Bsi −

αAsi
(1 + is)µs

)
x̃s +AsiBsi = 0 (23)

Solving (23) yields x̃∗s as follows

x̃∗s = Asi

α
µs − 2is − 1 +

√
(1− α

µs )
2 − 4isα

µs

2(1 + is)
(24)

Since the above equation must have a real solution, we deduce
that

i∗s = bµ
s

4α
(1− α

µs
)2c (25)

Optimal source rate can be obtained simply by taking the
inverse transformation as follows

x∗s =
[ 1
α

log x̃∗s
]
Xs

(26)

where [.]Xs is the projection operator on the Xs.
We then proceed to solve the problem through its dual. The

dual problem is defined as

max
µ≥0

D(µ) (27)

where D(µ) is dual function and is defined as the maximum
of the Lagrangian over x, i.e.

D(µ) = min
x̃∈X̃

L(x̃, µ) (28)

Problem (28) is an unconstrained optimization problem and is
already solved by x̃∗. Therefore, for the dual function we get

D(µ) = L(x̃∗, µ) (29)

B. Solving Dual Problem

Now we are ready to solve the dual problem (27). In order
to obtain a distributed solution, we will solve the dual problem
using gradient projection method [19]. The gradient projection
method, iteratively steps toward the opposite direction of the
gradient of the objective of the optimization (minimization)
problem. Therefore, for the dual problem (27), we get

µ(t+1) = [µ(t) − γ∇D(µ(t))]+ (30)

or equivalently,

µ
(t+1)
l =

[
µ

(t)
l − γ

∂D(µ(t))
∂µl

]+
(31)



where µ(t) = (µ(t)
l , l ∈ L) is the value of µ at tth iteration

step, γ is a constant step size and [z]+ = max(z, 0). For the
derivatives of D(µ), we get

∂D(µ(t))
∂µl

= cl −
∑
s

Rlsx
(t)
s (32)

Substituting (32) into (31) yields

µ
(t+1)
l =

[
µ

(t)
l − γ

(
cl −

∑
s

Rlsx
(t)
s

)]+
(33)

where x(t)
s is given by (26) The two update equations obtained

above form an iterative algorithm as the solution to the (9),
which will be discussed in the next section.

V. OPTIMAL ALGORITHM

In this section, we propose a distributed algorithm based on
the iterative solution obtained in Section IV.

In this subsection, we propose a distributed algorithm based
on the iterative solution obtained above.

Optimal source rate equations, i.e. (26) and (24), and La-
grange multiplier update (33), derived in the previous section,
can be used in conjunction with each other to form an iterative
algorithm as the solution to the optimization problem (9)-(10).
Lagrange multiplier is usually referred to as shadow price
owing to the economic interpretation of its role to adjust the
source rate [8], and hence thereafter we use this term instead.

For each time slot t (or iteration step t), the following key
steps exist in the algorithm:

1) Each link l calculates its corresponding Lagrange mul-
tiplier (shadow price) for the next time slot, i.e. µ(t+1)

l ,
based on its previous shadow price and its aggregate
traffic in the current time slot.

2) Each source s calculates its rate based on the aggregate
shadow price in its path.

3) Each source s transmits the packets based on the allo-
cated rate.

The rate control algorithm can be described as follows. For
each link l, shadow price µl is updated according to (33)
and the new shadow price result is communicated to sources
traversing this link. Each source s receives from the network
the shadow prices for links on its path and calculates µs using
(33), chooses a new source rate using (26) and (24), and
communicates this new rate to all the links in its path. The
procedures at the links and the video sources are repeated until
the algorithm converges to the optimal video rates and optimal
shadow prices. The iterative algorithm for solving (27) is listed
as Algorithm 1.

Algorithm 1. Dual-based Rate Control Algorithm
for Scalable Multimedia

Do until maxs |x(t+1)
s − x(t)

s | < ε

At each link l,
1. Update the shadow price as following:

µ
(t+1)
l = [µ

(t)
l − γ

(
cl −

∑
sRlsx

(t)
s

)
]+

At each source s,
1. Obtain the path price µs(t) =

∑
lRlsµ

(t)
l

2. Update x(t)
s according to the following equation:

a. i(t+1)
s = bµ

s(t)

4α
(1− α

µs(t)
)2c

b. x̃(t+1)
s =

Asi

−2i
(t+1)
s −1+ α

µs(t)
+

√
(1− α

µs(t)
)2− 4i(t+1)

s α

µs(t)

2(1+i
(t+1)
s )

where A(t+1)
si = eαksi

(t+1)
s

c. x(t+1)
s =

[
1
α

log x̃
(t+1)
s

]
Xs

where [.]Xs is the projection operator on the Xs.

VI. NUMERICAL RESULTS

In this section, we present the numerical results of the pro-
posed iterative algorithm. Numerous validation experiments
have been established, however, for the sake of specific
illustration, validation results are presented.

In our scenario we consider a network with a single bot-
tleneck link. There are 5 sources in the network, all passing
through a shared link with capacity c = 15 Mbps. Different
sources use different values of k as a result of different QoS
metrics and rate requirements. Recall that ks is the required
rate increase for source s to advance the utility Us by one.
In this scenario we chose: (k1, . . . , k5) = (2.8, 2, 1.3, 0.8, 1).
For the sake of illustration, utility functions corresponding to
different values of ks are displayed in Figure 2. Different α for
all sources is set to 5 and step size is chosen to be γ = 0.001.
Also, weight factors of all users are assumed to be equal.
Staircase utility functions for sources are depicted in Figure
2.

The evolution of source rates is depicted in Figure 3. The
evolution of the shadow price (µ) is depicted in Figure 4. Both
figures reveal that the convergence is relatively fast. In order
to get more insight, the rate allocation is summarized in Table
1.

VII. CONCLUSION

In this paper we addressed the Network Utility Maximiza-
tion (NUM) for applications relying on scalable multimedia
transmission using layered encoding schemes. The utility
function for such applications was shown to be non-concave,
which makes the NUM non-convex. Thereby dual-based NUM
approaches fail to reach the optimal solution. In order to tackle
this issue, we smooth the non-concave utility function using
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sigmoidal-like approximation, which was led to formulate
a convex NUM. This allowed us to propose a dual-based
distributed algorithm as the solution to the approximated NUM
and thereby as a suboptimal solution to the non-convex NUM.
Numerical results showed that the proposed algorithm achieves
suboptimal yet efficient solution. Convergence analysis of
the proposed algorithm in asynchronous and time-varying

TABLE I
RATE ALLOCATION FOR MULTIPLE LINK CASE

Source ks xs (Mbps)
1 2.8 5.29
2 2 3.79
3 1.3 2.48
4 0.8 1.54
5 1 1.91
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environments is our primary concern for the future studies.
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