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Abstract

Monitoring is one of key applications in wireless
sensor networks. In this paper, we consider Reactive
Monitoring in sensor networks, which takes the ad-
vantages of very low communication overhead. In this
respect, our primary concern is devising the reactive
monitoring mechanism with minimal communication
cost for a sensor network scattered in a Gaussian field.
We cast the threshold assignment for reactive monitor-
ing as an optimization problem based on the statistics
of each sensor measurement. Then, we propose a
distributed algorithm to set local thresholds on each
sensor node based on Particle Swarm Optimization
(PSO) technique. Through simulation, we illustrate
that the proposed threshold assignment algorithm can
significantly reduce the communication overhead of the
monitoring mechanism in sensor networks.

1. Introduction

Emergence of microsensors based on MEMS tech-
nology has made it possible to deploy a large net-
worked system comprising of battery-operated sensor
nodes. Amongst the wide variety of applications, mon-
itoring is a subject of primary concern in current and
emerging applications of wireless sensor networks. The
significance of monitoring in wireless sensor network
is increasing not only for accounting and management,
but also for revealing anomalies and malicious attacks.

One can distinguish between two fundamental
classes of monitoring mechanisms. In the Statistical
Monitoring mechanism, each agent is required to send
the raw measured data to the central node (base station)
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and then the central node will be responsible for
monitoring the current state of the network. On the
other hand, in Reactive Monitoring mechanism nodes
are required to send their measurements when central
node sends appropriate query to them. This mechanism
is essentially relying on local filters at monitoring sites
that act as local constraint monitors and each filter
in case of constraint violation (simply in the form of
crossing a locally predefined value), sends an update
message to the central node. Central node, upon receipt
of an update message, queries all nodes to send their
data to monitor the entire data set.

Reactive monitoring is essentially designed to alle-
viate the communication burden of monitoring tasks
in distributed and resource constrained scenarios, and
therefore is very appropriate for battery-operated wire-
less sensor networks [1]. In order to prolong the
lifetime of the sensor network, monitoring mechanism
must incur very low overhead, i.e. the communication
cost of submitting measured data to the central node.
Thus, our primary concern in adopting such a moni-
toring paradigm is adapting the monitoring scenario to
the environmental conditions of the sensor networks.

The major contribution of this work is to exploit the
reactive monitoring mechanism for usage in wireless
sensor networks. Our primary concern is to reduce
the communication burden emanated from transmit-
ting monitoring queries from sensor nodes. The pure
reactive monitoring mechanisms introduced so far,
are relying on a general architecture and have not
exploited the spatial distribution of sensor nodes over
the target environment. We concentrate on a wide
class of monitoring applications in which the essential
criterion of the monitoring is to check whether an
aggregate of the form

∑
i aixi has exceeded a global

parameter of the network, say a simple threshold T .
We aim at determining the local thresholds based on



the statistics of local events. Particularly, we assume
that the underlying phenomenon to be monitored is a
Gaussian stochastic process spatially distributed over
the network. Such an environment is usually referred
to as Gaussian random field. There exist a plethora of
physical events that are spatially distributed and obey
Gaussian distribution.

Towards this end, we formulate the threshold as-
signment problem to minimize the communication
overhead of the network. This allows us to design a
distributed threshold assignment algorithm which de-
termines the optimal thresholds based on the statistics
of each sensor.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 defines the
network model and states some preliminaries regarding
the reactive monitoring mechanism. Section 4 formu-
lates the optimization problem. Section 5 provides the
optimal solution to the threshold assignment problem
and presents a distributed threshold assignment algo-
rithm. Section 6 validates experimental evaluation of
the proposed algorithm. Finally, Section 7 concludes
the study.

2. Related Work

In recent years, continuous query processing for
monitoring distributed data streams has received much
research attention. Monitoring of aggregate of data in
networks initially mentioned by the pioneering work
of Dilman et al. [1]. They introduced installing local
mathematical constraints at remote monitoring sites
and present a simple approach for the efficient reactive
monitoring.

Keralpera et al. [2] extended the work of [1] and
presented several algorithms for static and adaptive
threshold setting for monitoring thresholded counts
queries and analyzed the communication complexity
of each algorithm. [3] investigates a hybrid push-pull
approach for monitoring global system parameters in
IP networks. Authors present algorithms for selecting
which elements “to push” and which “to pull” when
network elements events are independent or depen-
dent. Recent work of Kashyap et al. [4] considers
the problem of non-zero slack threshold assignment
which adaptively dedicates fraction of total threshold
to monitoring node to absorb small local threshold
crossing that eliminate the need for global system

polling. All the above works assume centralized thresh-
old computation and assignment but in this paper we
propose a distributed algorithm for optimal threshold
setting.

In our previous studies, we addressed the problem of
distributed threshold selection for reactive monitoring
in wireless sensor network scenarios [5]-[7]. This work
differs from those in that here we assume that the
underlying monitoring event follows Gaussian distribu-
tion, thereby making the area a Gaussian random field.
Since Gaussian distribution is somewhat disobedient
to be addressed in dual-based solutions for this class
of problems ([5]-[7]), this paper takes a quite different
approach and solves the problem using Particle Swarm
Optimization (PSO) technique [10].

3. Network Model and Monitoring Scenario

3.1. Network Model

We consider a sensor network comprising of n
nodes scattered over an area. We assume that each
sensor node i is in charge of monitoring a physical
phenomenon within its coverage region, and whose
measured value is denoted by xi. We assume that there
is a base station being responsible for monitoring the
network. The goal of the network is to monitor when
the aggregate value of all the measurements of the form∑n

i=1 aixi crosses a predetermined threshold T , where
ai, i = 1, . . . , n are predefined constants.

3.2. The Monitoring Algorithm

In this paper we focus on reactive monitoring
schemes, in which for each monitoring agent i a local
threshold ti is determined. Here, we exploit the Simple-
Value (SV ) Algorithm introduced in [1]. The SV
Algorithm consists of two parts: SVN for monitoring
nodes and SVC for central base station. Both of these
parts are described in [1] and are listed in the sequel
as SV Algorithm.

4. Problem Formulation

One of the key features for a reactive monitoring
algorithm in a resource-constrained sensor network
is to incur low monitoring overhead. Since power is
a scarce resource and the primal reason for energy



drainage is communication, our main goal is to mini-
mize the probability of global polling. In this respect,
it is shown in [8] that the probability of preserving all
local constraints should be maximized. Formally, it is
equivalent to saying that Pr(x1 ≤ t1, . . . , xn ≤ tn)
should be maximized. In sensor networks, monitoring
sites are usually located far enough from each other so
that correlation between nearby sites can be ignored,
and thereby sensor measurements can be deemed in-
dependent. Therefore, we conclude that

Pr(x1 ≤ t1, . . . , xn ≤ tn) = F (t) =
n∏

i=1

Fi(ti) (1)

where F is the joint Gaussian CDF (Cumulative Fre-
quency Distribution) of all sensors, Fi is the Gaussian
CDF of sensor measurement i, and t = (ti, i = 1..n) is
the vector representation of local thresholds. Moreover,
the last equation is obtained using the fact that all
sensor measurements are assumed to be independent.
To find the minimal communication cost threshold
assignment,

∏n
i=1 Fi(ti) should be maximized such

that [8]:

max
t

n∏
i=1

Fi(ti) s.t.
n∑

i=1

aiti ≤ T (2)

SV. Simple-Value Algorithm
SVN :
At each monitoring node i:
Initialize threshold ti.
if xi > ti

send an update to the base station.

SVC :
Initialize f = 0
while (TRUE)

if an update received
f ← POLL ALL(xi)
f > T

report ALARM

SV. Simple-Value Algorithm

For the Gaussian sensor measurements, CDF is
defined by

Fi(ti) =
∫ ti

−∞

1√
2πσ2

i

e
− (z−µi)

2

2σ2
i dz (3)

For the sake of convenience in our analysis, we
use the following approximation for Gaussian CDF for

(ti ≥ µi) [9]:

Fi(ti) ≈ 1− 1√
2π
e
− (ti−µi)

2

2σ2
i

5∑
j=1

bjy
j
i (4)

where (b1, . . . , b5) = (0.32,−0.36, 1.78,−1.82, 1.33)
and yi = 1

1+0.23ti
. Therefore, we approximate the

problem (2) by rewriting it as

max
t

n∏
i=1

1− 1√
2π
e
− (ti−µi)

2

2σ2
i

5∑
j=1

bjy
j
i

 (5)

subject to:
n∑

i=1

aiti ≤ T (6)

In the sequel, we conduct the relevant analysis for
solving problem (5)-(6).

5. Optimal Threshold

In this section, we solve optimization problem (5)-
(6). Problem (5)-(6) is constrained and cannot be
solved directly in distributed systems such as sensor
networks. On the other hand, obtaining the closed form
expression for optimal threshold is cumbersome, if not
impossible. To solve problem (5)-(6), we use Parti-
cle Swarm Optimization (PSO) technique [10]. PSO
technique cannot be directly applied to constrained
optimization problems, thus we first relax the problem
by defining exterior penalty function [12] as

φ(t, rk) =
n∏

i=1

1− 1√
2π
e
− (ti−µi)

2

2σ2
i

5∑
j=1

bjy
j
i

 (7)

−rk

(
max[0,

∑
i

ti − T ]

)2

where rk is a positive penalty parameter. The exterior
penalty function algorithm iteratively finds the optimal
solution to (5)-(6) through the following steps.
• Step 1: Set k = 1 and choose an appropriate value

for rk and start from any initial solution tk

• Step 2: Find t∗k that maximizes (7).
• Step 3: If t∗k is feasible, i.e. it satisfies (6), then

the algorithm terminates and t∗k is the optimal
solution to (5)-(6). Otherwise go the next step.

• Step 4: Choose the next value of penalty param-
eters rk+1

rk
= c where c > 1 is a constant. Set

tk+1 = t∗k and go to Step 2.



From Step 2 in algorithm above, it’s apparent that
finding the optimal t∗k is required for each penalty
parameter rk. To do so, we use the Particle Swarm
Optimization technique. More details of this technique
can be found in [11].

We assume that swarm size, i.e. number of particles
in the swarm is M . PSO technique is governed by the
two following equations

vm(t+ 1) = wvm(t) + c1rand()(ym(t)− xm(t)) (8)

+c2rand()(ŷm(t)− xm(t))

xm(t+ 1) = xm(t) + vm(t+ 1) (9)

where vm = (vmj , j = 1, . . . , n) is the velocity vector
for particle m and vmj is the velocity of particle m
in dimension j and xm = (xmj , j = 1, . . . , n) is the
position vector of particle m and xmj is the position of
particle m at dimension j. ym = (ymj , j = 1, . . . , n)
and ŷm = (ŷmj , j = 1, . . . , n) are the best position
vectors found by particle m and by the entire swarm,
respectively. rand() returns a random number uniformly
distributed in [0, 1] interval and w is the inertia weight.

We now devise a threshold assignment algorithm
based on the iterative solution obtained above. First,
we assume that monitoring sensors are arranged in a
ring topology so that each node can update information
with its two neighboring nodes. Prior to running the
algorithm, all nodes are required to send their param-
eters, i.e. µi and σi, using flooding-like algorithms or
gossiping, to all other nodes.

Although only as few as 10 nodes (particles) will
suffice for a swarm, for the sake of simplicity, all nodes
contribute to one swarm instead of multiple swarms.
Therefore, we can use node index i and particle index
m, interchangeably. Based on the steps 1-4 described in
this section, each node iteratively calculates its optimal
threshold. Each node i receives ŷi from the network
and updates vi using (8) and consequently xi using
(9). The communication overhead of the algorithm
only stems from exchanging information between two
nearby nodes.

6. Experimental Evaluation

We have conducted simulation experiments to eval-
uate the performance of the proposed algorithm using
MATLAB and OMNeT++. In our simulation scenario,
we consider a sensor network consisting of 100 sensor
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Figure 1. Optimal Threshold for Sensor Nodes
(Bar Plot) and Uniform Threshold (Dashed Line)

nodes. We assume that each node i takes measurements
of a normally distributed physical phenomenon with
parameters (µi, σ

2
i ). The corresponding coefficient ai

for such an illustrative experiment is set to 1.
For the first experiment µi is drawn uniformly from

[10, 40] and σ2
i = µi. Total threshold T is set to

4000. In our simulation experiments, we have run the
algorithm using the swarm size of M = 24. The inertia
weight w is set to 0.4. c1 and c2 are both set to 2 and
r1 is chosen to be 1. Since only one constraint exists
in the optimization problem (5), once the algorithm
runs through steps 1-4, obtained solution satisfies the
constraint and thereby the algorithm would terminate.

In order to have a better understanding of how
optimal thresholds are scattered in a heterogeneous
fashion over the network, Fig. 1 depicts the bar plot
of optimally-assigned thresholds for all nodes. As
Fig. 1 implies, optimal thresholds for the majority of
nodes are quite different from the uniform thresholding
schemes, which is shown in the dashed line.

In order to have insight about the convergence
behavior of the algorithm, evolution of the objective
of problem (5)-(6) for all nodes toward the optimal
value is depicted in Fig. 2. In this figure, evolu-
tion of

∏
i Fi(ti) function for some sensor nodes is

depicted, however, the difference is intangible. This
figure divulges that the convergence of the algorithm
is relatively fast and after a few hundreds of iterations,
each node obtains its optimal threshold.

To show the efficiency of the algorithm, the overhead
due to messages for both optimal and uniform thresh-



0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Steps

C
D

F
 P

ro
d

u
ct

 o
f 

A
ll 

N
o

d
es

 

 

Figure 2. Evolution of CDF Product of All Sensor
Nodes (

∏n
i=1 Fi(ti))
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Figure 3. Communication Cost of The Monitoring
Mechanism With Optimal and Uniform Thresholds

olds are compared in Fig. 3. This figure divulges that
the number of messages is dramatically alleviated by a
factor of 20-40. Such a tangible reduction in overhead
proves quite promising especially when there are a lot
of monitoring sensors in the network.

7. Conclusion

In this paper, we addressed the problem of threshold
selection for reactive aggregate threshold monitoring in
WSNs scattered in Gaussian random fields. We formu-
lated designing the minimal-cost network monitoring
scenario by casting the threshold assignment as an op-
timization problem. We have exploited PSO technique
to solve the problem which led to a distributed solution.

The results extracted from the experimental evaluations
was promising and verified that the communication
cost of the algorithm is dramatically alleviated com-
pared to the naı̈ve threshold assignments.
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