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Abstract— This paper addresses the problem of optimal power ad-hoc networks. To the best of our knowledge, only little
allocation in multiuser OFDM ad-hoc networks. Our objective  studies such as [8] have considered multiuser OFDM in ad-
is to maximize the weighted rate-sum of users under total - petworks. In [8] the authors addressed the problem of

transmit power constraint. Maximizing a weighted rate-sum inimization i d-h twork whil intaini
is more amenable whereas appropriate weight assignment to power minimization in an ad-noc network whiie maintaining

different users, guarantees fairess among users. We proposed fixed data rate on each link.

a distributed algorithm for optimal power allocation based on In this paper, we consider fixed subcarrier allocation and
reaching a consensus among users for power allocation. Theaddress the problem of optimal power allocation to maximize
proposed algorithm is tractable in the sense of computational he weighted rate-sum of nodes with total transmit power

complexity and requires only local information at each node. constraint. Maximizing a weiahted rate-sum with approperiate
Simulation results and the analysis of the algorithm are presented ) g 9 pprop

to support the proposed idea. weights can guarantee fairness among users, which can not
Index TermsOFDM, Power Allocation, Ad-Hoc Network, Wa- necessarily be achieved with uniform weights. We derive opti-
terfilling, Consensus Algorithms. mal power allocation for subcarriers and propose an algorithm

to perform optimal power allocation in a distributed way. Our
algorithm is based on consensus algorithms in which all nodes
Orthogonal Frequency Division Multiplexing (OFDM) istry to reach a consensus or agreement on a desired unknown
an attractive solution for future wireless communication neparameter in a distributed fashion ( [9]- [11]).
works. OFDM can provide a high performance physical layer This paper is organized as follows: in section Il we present
and medium access control thanks to its ability to conthe system model and formulate our problem. In section
bat ISI and multipath fading. Additionally, through dynamidll we derive optimal power allocation for each subcarrier
subcarrier allocation, OFDM can exploit multiuser diversitgnd in section IV we propose a distributed power allocation
which is inherent in the multiuser wireless networks. Thalgorithm. Numerical resluts are presented in section V and
most challenging issue in OFDM systems is the problesection VI involves conclusion and future work issues.
of subcarrier and power allocation in a multiuser network
in order to minimize the total transmit power or maximize

the total data rate or a utility function of data rate of users. del the topol f1h work b directed h
The problem of optimal subcarrier and power allocation for € model the topology of the hetwork by an undirected grap
= (E,V) with vertex setV = {1,2,..., K} and edge set

multiuser OFDM network has attracted many research interests™ *~° " | ™ VY denoting th ¢ of nod d link
and are investigated by many researchers ( [1]- [8]). In [1], — {(_Z’])h’] € V} denoting e Set of noces and inks,
§pect|vely. For edge set, we haliej) € E if and only if

optimal subcarrier and power allocation has been carried ﬁ X tion betw otland 7. We denote th
to minimize the total transmit power of all users. In [2], th ere 1s a connecllon € een.n an‘ J: € genote the
[eighbors of node by N; = {j € V|(i,j) € E}. In this

authors outlined the problem of data rate maximization whi ¢ the fixed subcarri . t sch
achieving proportional faimess among users. High compuf}gPe", W€ Tocus on the IIxed subcarmer assignment scheme,

tional complexity makes the optimal subcarrier and pow&f: each r!ode according to its trgnsmit data rate, has a fixed
allocation impractical. In order to reduce complexity, SeV(_}rglredeterm|ned number of subcarriers. We also denote the set of

sub-optimal subcarrier and power allocation algorithms hai\r?;r%asrerﬁrsstzzsrﬁ?ﬁgetroo?gﬁki);g férgg?izggéugagéﬁg iﬂér
been presented. [3] proposes a sub-optimal algorithm . . :
b [3] prop P g n OFDMA network with no clustering, the subcarrier sets of

subcarrier assignment with uniform power allocation. In [ link disioint sets. T i h | ficient
the authors outlined a joint suboptimal subcarrier and po lnl INKsS are disjoint Sets. fransmit power, channet coetricien
nd noise power on theth subcarrier of the nodé are

allocation for multiuser OFDM. The [6] [7] have addresseft .

the problem of optimal power and subcarrier allocation whilt presented by’ n, fk.n andnx.n, respectively. Therefore,

maximizing a utility of data rate of users. t & maximum data rate that can be sent omttiesubcarrier
All of the aforementioned studies have focused on '3 9V€N by [12] and [13]

centralized schemes and consequently, are not practical for

distributed implementation which is applicable for wireless

I. INTRODUCTION

Il. SYSTEM MODEL
We consider an OFDMA-based wireless ad-hoc network.
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Ckn = log(l + ) (1)



where I' is the SNR-gap. The SNR-gap defines the gap
between a practical coding and modulation scheme and the k ~ K N
channel capacity and depends on the coding and modulatioff = Z Z ki 10g(1+ Prngrn) — AZ Z Pin (9)

scheme used for a specific probability of error. The total data  k=1n=1 k=1n=1
rate of nodek is given by: where \ represents the Lagrange multiplier for constraifit (4).
By taking the derivative ofL with respect toP;, ,, we obtain
Ry = ; Ch.n @ the necessary condition for the optimal solution:
nesSy
Although [2) seems to involve only single-hop transmission oL lpr = YkPEnIkin (10)
schemes, in the aforementioned model we have also modeled OPgp 1+ Ppngron
multi-hop ones. In fact, for a known routing policy, each node i} Qg 1.
has a specific amount of data to be sent to its neighbor(s) Pin = Prnl~" = gkin} (11)

which consists of its own data and the others’ data to b
relayed through it. In this respect, such a model would invol
multi-hop transmission scheme.

Our objective is to maximize the weighted rate-sum of
nodes under the constraint that total power of all users c
not exceed a maximum value. As we consider fixed subcarr|Br , _ S . .
assignment, our goal is to find the optimal power allocation strative example of multi-level waterfilling is depicted in

subcarriers. The optimization problem can be formulated agﬁ'g' 1. As v.ve.would_ like to maximize a weighted rate-sum
of users, this is equivalent to fill water to each nodetswl

e optimal power allocation obtained above, is somewhat
similar to classical waterfilling, but different weights for differ-
aﬂnt nodes have led to different water levels, %e. Indeed, this
Lgsnmulti-level waterfilling, which has been proposed recently
the context of utility-based resource allocation [6]. An

K whose depth is proportional to the weight assigned to it.
%&XZakRk 3) In a centralized scheme, a center calculatesuch that
T k=1 constraint[(#) will be satisfied and then sends this value to each
subject to: user. In a distributed scheme, such as ad-hoc networks, the
K value of A must be calculated distributedly. In the next section,
Z Z P < Prax (4)  we propose an algorithm to calculatedistributedly based on
k=1neSk distributed averaging. Before we proceed to our algorithm, we
S1,Ss, ..., Sxare all disjoint (5) state how\ is related to the average of nodes’ data.
S1USU...USk ={1,2,...,N} (6)

Water level of user 2

whereP,,. IS the upper bound of the total transmission power, ‘;,%é?))‘—?

ay is the weight assigned for nodeaccording to the priority

of it with regard to others andV denotes the number of
subcarriers in the system. For notational convenience in the
final solution, a’s are normalized to satsify the following
condition:

1 K
?Z ap =1 ()
k=1

Appropriate weight assignment can achieve fairness acrosg*
users and prevents allocating more resources to nodes wit
good channels. In order to make the problem formulation ‘H;(W
more tractable, we introduce subcarrier sharing factors.,.

0 fi f2 Frequency

If subcarriern is assigned to nodeé, p,, = 1, otherwise
pr.n = 0. For notational convenience we define:
h2
k.n . . -
Jhen = ’ (8) Fig. 1. Multi-level Waterfilling
’ I‘nk,n
1. OPTIMAL POWER ALLOCATION _ Theorem _1:In the Wa}terfilling process, th_e ngrange mul-
) ) ) ) ) tiplier, A, which determines the water level is given by:
In this section, we derive optimal power allocation for all 1
subcarriers and present a theorem which proves that such A= —— (12)
power allocation can be done distributedly, with arbitrarily L+ L

small error. Using the standard optimization methods [14], thewhere L is the average of water level of subcarriers for
Lagrangian can be written as: uniform power allocation and is the sum of negative powers



- allocated usingL - averaged over strong subcarriers, i.e. V. DISTRIBUTED POWER ALLOCATION ALGORITHM
subcarriers with non-negative power.

As discussed above, optimal power allocation in an ad-
Proof: Water level after a waterfilling process, is glverF1 P P

oc network necessitates performing waterfilling in a dis-

by [13]: 1 1 tributed manner. In order to perform multi-level waterfilling
3= E(Pmax +) 97) (13) distributedly, each node should have knowledge about its own
neD water level, i.e.5k. Intuitively, we may think of multi-level
where D is the set of subcarriers with non-negative powewaterfilling as the classical one, by scaling noise and power
and D is the set of ones with zero power. Clearly,u D = of userk with —. The larger the weight of usér, the more
{1,2,...,N}. Allocating uniform power to each subcarrierwould be the power and the network has more incentive to
yields allocate power to it. In other words, nodes with large weights
L, = Prnax + 1 (14) have permission to announce their SNR scaledvpyn order
N 9n to absorb more water from available resources. Based on the

where L,, denotes the initial water level of each subcarrieabove heuristic, all nodes only need to have agreement on the
We denote the average &f,’s by L. Therefore we have value of 5 L Toward this, we propose a distributed algorithm to
M p 1 reach a consensus on the valuepfOur algorithm is based
L=— Z( == 4+ ) (15) on distributed averaging calledonsensus averaginghich
N N In calculates the average of a group of nodes in a distributed

n=1
Power allocation according to the average water leelis fashion by reaching a consensus among them.

given by The problem of distributed averaging has been extensively
= 1 studied recently in the context of data fusion over networks. So

Pon=L-— (16) o :
In far several ways for distributed averaging have been proposed

Negative powers ifi 16 introduce error to the final water levd®], [15], [16]. In this paper, we adopt the method proposed
In order to overcome to this problem, we should share g Xiao et al. [15] which involves single-hop transmissions
negative powers among strong subcarriers. In this respedtd requires local information of the network. In the method
we average the negative powers over strong subcarriersPfgsented in [15], each node exchanges its data with its
be added to the average water level. The avarege of negafigighbors and updates its data according to a weighted sum

power levels over strong subcarrier is given by: of its data and that of its neighbors, iteratively. The update
equation can be written as [15]
Py, 17
|D| 7; o ( ) :Z},;(t + 1) = W71I7(t) + Z Wijxj(t) (21)
Adding the L to average water level of subcarriers, yields the JEN:
final water level,L ¢inq:, as where z;(t) represents data of nodeafter ¢ iterations and
1 Wi;'s denotes the weights of useérAforementioned updating
L+L=L+ N_D| Z Py (18) in each node continues until convergence is achieved. It has
neD been proved [15] that with appropriate choice of weights and
— I+ 1 _ Z (L - i) after large enough iterations, all nodes’ data will converge to
N — |D| oy 9n the average of the entire network, even though nodes only have
= local information about the network. In this respect, nodes
=L DI —) — 1 _ S can obtain knowledge about the value of a parameter which
— D" N—[D[ %= 9n requires complete information of all nodes, such as water level
N 1 1 in the waterfilling.
= N — \b\ L— N — \D| Z 97 It should be noted that there are several choices of weights
neD ([9], [15]). One famous and simple one is Metropolis which
combining [I5) and[(18) yield: requires only local information and converges very fast com-
L 1 P N o4 1 1 pared to other ones. Metropolis weight matrix is defined as:
Lt L=——= ‘“‘”‘+Zf>— >, 19 , .
N-—|D|" N 1 9n |D| neD TImaxd, d;} {i,j} € N
1 Hl X
= ‘Dl — + Z Wi; = 1- ZivkENi Wi i=] (22)
— % 0 otherwise.
Therefore The weights in[(2R) is applicable for averaging with uniform
N = — 1 _ (20) weighting. Therefore, usage df (22) is restricted to uniform
L+L subcarrier assignment schemes. In order to evaluate a weighted

B average of nodes’ data, which is useful for non-uniform



Algorithm 1 Consensus Power Allocation

subcarrier assignment schemes, the update eqiiafjon 23 should

e . Initialization
be modified as the following 215(0) = By (Pmazlel 4 5 o )
wi(t+1) = Wafiwi(t) + Y WisBia(t)  (23) Step 1
JEN;
where 3; denotes the sharing weight of in the averaging. While ¢ < maxiteration  AND status  #converged
For simplicity, we embed thes; factor in the initial values w1 (t 4+ 1) = Wi (t) + 225 v, Wiz (t)

of data. For a non-uniform subcarrier assignment scheme, the  end while
proposed algorithm initializes with an initial water level given

by Step 2
P, Sk 1 B
le - Bk(%H + Z gT) (24) Lok = ‘Sk_‘f‘g‘k‘ Znegk Pk,n
,n
. nESk o . While ¢ < max.iteration AND status #converged
The proposed algorithm performs distributed multi-level
waterfilling. The algorithm, motivated from Theorem 1, has wo(t + 1) = Wipmar(t) + 22 e n, Wijiz2;(t)

two major loops. The first loop is devoted to evaluate the
average water level of all subcarriers iteratively, based on the
consensus averaging with modified Metropolis weights. As  Step 3

end while

mentioned above, the average water level of all subcarriers forLk ;gk(wm + x21)
is equivalent to a weighted average of nodes’ water. At the P T
Pk’n - [Lk ]

9k,n

end of first loop, each node knows the average water level end for
of all subcarriers. In the next step, each node performs a end
waterfilling according to the derived average level of water. ~ Algorithm 1. Consensus Power Allocation

In high SNR regime over entire bandwidth, all subcarriers Gijoij
will be waterfilled with a positive value of water (i.e. power), hij = —gr (25)
]

but if some of subcarriers have low SNR values, they may be

waterfilled with negative power and thus they can introdudd/e consider an environment with path loss and rayleigh
errors to the exact water level. The error introduced is mofeding and adopt the channel model presented in [8]. In
critical when more subcarriers suffer from such low SNRis respect, the channel coefficient from nodéo node j
values. In order to correct the error inroduced in the averagemodeled as where;* and «;; represent the path loss
water level, each node measures the negative power (waghyl rayleigh fading parameters, respectively. Transmitter and
it has already assigned to its weak subcarriers averaged o@seiver antenna gains are combined indhg factor. In order
other subcarriers. In the next loop, all nodes try to find tHe maximize the overall data rate while trying to allocate equal
average of the error, iteratively. Finally, according to Theorefate to all nodesq’s are assumed to be Sum of the user’s

1, each node calculates the final water level by adding tHata rate with the proposed power allocation and uniform
average error to the average water level measured in the figewver allocation for a wide range of valuesif.. is depicted
loop and then scale the result according to its weight in tfie Fig. 2. Performance improvement which is defined as the
maximization. The algorithm terminates with power allocatioratio of increase in the overall rate and total rate is also shown
according to the final water level. The proposed distributéd Fig. 3. It is worth noting that as total transmit pOWeY, .,
optimal power allocation is shown below as algorithm 1.

25

V. SIMULATION RESULTS ANDANALYSIS

In this section, performance of the proposed algorithi
is analyzed through simulation and is compared with tt
centralized scheme. We have considered a network 6of
randomly placed nodes ovéd, 100] x [0,100] field with a
connectivity degred).35, which defines the range in which
nodes can see each other. In other words, nodes with dista
not more thar0.35, are assumed connected. Each node war

n
o
T

N
o
T

n
o
T

-
o
T

Q —— Consensus Power Allocation

Sum of User's Data Rate (Mbps)

to transmit or relay data to its destination(s) according to Y nitorm Power Allocation
routing policy. We also assume that total system bandwidth .

10MHz and there are 64 subcarriers in the OFDM system. T sf¢

noise power spectral density at each subcarrigfis 41V /Hz d 2 n . P T FRTYR—T
and the SNR gap is supposed toth&dB. Assuming fixed and Total Transmit Power (Watt)

uniform subcarrier assignment, each node has to send its data
over a set ot predetermined subcarriers. Fig. 2. Sum of User's Data Rate vs. Total Transmit Power
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converges fast and is tractable from computational complexity
point of view. Simulation results confirm that the performance
degrdation introduced by distributed power allocation is quite
small with regard to centralized scheme. In order to increase
the convergence rate of the proposed algorithm, adaptive
weights can be used as proposed in [17], for consensus aver-
aging in the algorithm instead of Metropolis. As an extention
to current paper we are considering joint power allocation and
subcarrier assignment in ad-hoc OFDM network, distributedly.
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