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Abstract— This paper addresses the problem of optimal power
allocation in multiuser OFDM ad-hoc networks. Our objective
is to maximize the weighted rate-sum of users under total
transmit power constraint. Maximizing a weighted rate-sum
is more amenable whereas appropriate weight assignment to
different users, guarantees fairness among users. We propose
a distributed algorithm for optimal power allocation based on
reaching a consensus among users for power allocation. The
proposed algorithm is tractable in the sense of computational
complexity and requires only local information at each node.
Simulation results and the analysis of the algorithm are presented
to support the proposed idea.

Index Terms-OFDM, Power Allocation, Ad-Hoc Network, Wa-
terfilling, Consensus Algorithms.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
an attractive solution for future wireless communication net-
works. OFDM can provide a high performance physical layer
and medium access control thanks to its ability to com-
bat ISI and multipath fading. Additionally, through dynamic
subcarrier allocation, OFDM can exploit multiuser diversity
which is inherent in the multiuser wireless networks. The
most challenging issue in OFDM systems is the problem
of subcarrier and power allocation in a multiuser network
in order to minimize the total transmit power or maximize
the total data rate or a utility function of data rate of users.
The problem of optimal subcarrier and power allocation for a
multiuser OFDM network has attracted many research interests
and are investigated by many researchers ( [1]- [8]). In [1],
optimal subcarrier and power allocation has been carried out
to minimize the total transmit power of all users. In [2], the
authors outlined the problem of data rate maximization while
achieving proportional fairness among users. High computa-
tional complexity makes the optimal subcarrier and power
allocation impractical. In order to reduce complexity, several
sub-optimal subcarrier and power allocation algorithms have
been presented. [3] proposes a sub-optimal algorithm for
subcarrier assignment with uniform power allocation. In [5]
the authors outlined a joint suboptimal subcarrier and power
allocation for multiuser OFDM. The [6] [7] have addressed
the problem of optimal power and subcarrier allocation while
maximizing a utility of data rate of users.

All of the aforementioned studies have focused on a
centralized schemes and consequently, are not practical for
distributed implementation which is applicable for wireless

ad-hoc networks. To the best of our knowledge, only little
studies such as [8] have considered multiuser OFDM in ad-
hoc networks. In [8] the authors addressed the problem of
power minimization in an ad-hoc network while maintaining
a fixed data rate on each link.

In this paper, we consider fixed subcarrier allocation and
address the problem of optimal power allocation to maximize
the weighted rate-sum of nodes with total transmit power
constraint. Maximizing a weighted rate-sum with approperiate
weights can guarantee fairness among users, which can not
necessarily be achieved with uniform weights. We derive opti-
mal power allocation for subcarriers and propose an algorithm
to perform optimal power allocation in a distributed way. Our
algorithm is based on consensus algorithms in which all nodes
try to reach a consensus or agreement on a desired unknown
parameter in a distributed fashion ( [9]- [11]).

This paper is organized as follows: in section II we present
the system model and formulate our problem. In section
III we derive optimal power allocation for each subcarrier
and in section IV we propose a distributed power allocation
algorithm. Numerical resluts are presented in section V and
section VI involves conclusion and future work issues.

II. SYSTEM MODEL

We consider an OFDMA-based wireless ad-hoc network.
We model the topology of the network by an undirected graph
G = (E, V ) with vertex setV = {1, 2, . . . ,K} and edge set
E = {(i, j)|i, j ∈ V } denoting the set of nodes and links,
respectively. For edge set, we have(i, j) ∈ E if and only if
there is a connection between nodei and j. We denote the
neighbors of nodei by Ni = {j ∈ V |(i, j) ∈ E}. In this
paper, we focus on the fixed subcarrier assignment scheme,
i.e. each node according to its transmit data rate, has a fixed
predetermined number of subcarriers. We also denote the set of
subcarriers assigned to nodek by Sk, whose cardinality,|Sk|,
represents the number of subcarriers of nodek. As we consider
an OFDMA network with no clustering, the subcarrier sets of
all links are disjoint sets. Transmit power, channel coefficient
and noise power on thenth subcarrier of the nodek are
represented byPk,n, hk,n and nk,n, respectively. Therefore,
the maximum data rate that can be sent on thenth subcarrier
is given by [12] and [13]:

ck,n = log(1 +
Pk,nh2

k,n

Γnk,n
) (1)



where Γ is the SNR-gap. The SNR-gap defines the gap
between a practical coding and modulation scheme and the
channel capacity and depends on the coding and modulation
scheme used for a specific probability of error. The total data
rate of nodek is given by:

Rk =
∑

n∈Sk

ck,n (2)

Although (2) seems to involve only single-hop transmission
schemes, in the aforementioned model we have also modeled
multi-hop ones. In fact, for a known routing policy, each node
has a specific amount of data to be sent to its neighbor(s)
which consists of its own data and the others’ data to be
relayed through it. In this respect, such a model would involve
multi-hop transmission scheme.

Our objective is to maximize the weighted rate-sum of all
nodes under the constraint that total power of all users can
not exceed a maximum value. As we consider fixed subcarrier
assignment, our goal is to find the optimal power allocation of
subcarriers. The optimization problem can be formulated as:

max
Pk,n

K∑
k=1

αkRk (3)

subject to:
K∑

k=1

∑
n∈Sk

Pk,n ≤ Pmax (4)

S1, S2, . . . , SKare all disjoint (5)

S1 ∪ S2 ∪ . . . ∪ SK = {1, 2, . . . , N} (6)

wherePmax is the upper bound of the total transmission power,
αk is the weight assigned for nodek according to the priority
of it with regard to others andN denotes the number of
subcarriers in the system. For notational convenience in the
final solution, αk ’s are normalized to satsify the following
condition:

1
K

K∑
k=1

αk = 1 (7)

Appropriate weight assignment can achieve fairness across
users and prevents allocating more resources to nodes with
good channels. In order to make the problem formulation
more tractable, we introduce subcarrier sharing factors,ρk,n.
If subcarriern is assigned to nodek, ρk,n = 1, otherwise
ρk,n = 0. For notational convenience we define:

gk,n =
h2

k,n

Γnk,n
(8)

III. O PTIMAL POWER ALLOCATION

In this section, we derive optimal power allocation for all
subcarriers and present a theorem which proves that such
power allocation can be done distributedly, with arbitrarily
small error. Using the standard optimization methods [14], the
Lagrangian can be written as:

L =
K∑

k=1

N∑
n=1

αkρk,n log(1 + Pk,ngk,n)− λ
K∑

k=1

N∑
n=1

Pk,n (9)

whereλ represents the Lagrange multiplier for constraint (4).
By taking the derivative ofL with respect toPk,n, we obtain
the necessary condition for the optimal solution:

∂L
∂Pk,n

|P∗
k,n

=
αkρk,ngk,n

1 + Pk,ngk,n
− λ = 0 (10)

P ∗
k,n = ρk,n[

αk

λ
− 1

gk,n
]+ (11)

The optimal power allocation obtained above, is somewhat
similar to classical waterfilling, but different weights for differ-
ent nodes have led to different water levels, i.e.αk

λ . Indeed, this
is multi-level waterfilling, which has been proposed recently
in the context of utility-based resource allocation [6]. An
illustrative example of multi-level waterfilling is depicted in
Fig. 1. As we would like to maximize a weighted rate-sum
of users, this is equivalent to fill water to each node’sbowl
whose depth is proportional to the weight assigned to it.

In a centralized scheme, a center calculatesλ such that
constraint (4) will be satisfied and then sends this value to each
user. In a distributed scheme, such as ad-hoc networks, the
value ofλ must be calculated distributedly. In the next section,
we propose an algorithm to calculateλ distributedly based on
distributed averaging. Before we proceed to our algorithm, we
state howλ is related to the average of nodes’ data.618 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 2, MARCH 2005

To achieve its optimality, a utility-based multilevel water-filling
is needed, which is stated in the following theorem.

Theorem 3: For a given fixed subcarrier assignment, ’s for
all , the optimal power allocation satisfies

(17)

where is a constant for the normalization of the optimal power
density

and as well as the ’s satisfy

where the ’s and are the optimal values of the rates and
the power density, respectively.

It should be indicated that Theorem 3 only gives a neces-
sary condition for the globally optimal power allocation. The
proof of this theorem is similar to the water-filling theorem [29],
which is summarized in Appendix B.

Similar to the classical water-filling [29], the optimal power
allocation cannot be directly calculated from (17), and iterative
algorithms are needed to obtain the optimal one satisfying the
power constraint.

There are two major differences between the classical water-
filling and the one in Theorem 3. First, the water-level for each
user is proportional to its current marginal utility value .
In other words, the power allocation is also related to the utility
functions. Since the data rates of users are unlikely equal, it is
from (17) that the water levels, ’s, are different for
different users. Second, the power constraint is the total trans-
mission power rather than the power of an individual user. As
shown in Fig. 3, the utility-based multilevel water-filling (17)
can be regarded as an extension of the fixed-priority multilevel
water-filling in [30].

B. Joint DSA and APA

The DSA and APA can be used simultaneously for the
cross-layer optimization. The joint DSA and APA optimization
can be formulated as follows: adjust the ’s and to
maximize

(18)

Fig. 3. Multilevel water-filling for adaptive power allocation in a two-user
network.

subject to

(19)

and (20)

and

and

(21)

Obviously, there are two necessary conditions for the global
optimum for the joint DSA and APA.

1) Fixing the optimal subcarrier assignment, any change
of the power allocation does not increase the total
utility.

2) Fixing the optimal power allocation, any change of
the subcarrier assignment does not increase the total
utility.

Therefore, an optimal frequency assignment ’s for all and
power allocation must satisfy the conditions in both The-
orems 3 and 4. Consequently, we have the following theorem.

Theorem 4: Let the ’s for and be
the optimal subcarrier assignment and power allocation, respec-
tively. Then, they satisfy the conditions in (22), located at the
bottom of the page, where the ’s and are constrained by

,

,
(22)

Fig. 1. Multi-level Waterfilling

Theorem 1:In the waterfilling process, the Lagrange mul-
tiplier, λ, which determines the water level is given by:

λ =
1

L̄ + L̃
(12)

where L̄ is the average of water level of subcarriers for
uniform power allocation and̃L is the sum of negative powers



- allocated usingL̄ - averaged over strong subcarriers, i.e.
subcarriers with non-negative power.

Proof: Water level after a waterfilling process, is given
by [13]:

1
λ

=
1
|D|

(Pmax +
∑
n∈D

1
gn

) (13)

where D is the set of subcarriers with non-negative power,
and D̄ is the set of ones with zero power. Clearly,D ∪ D̄ =
{1, 2, . . . , N}. Allocating uniform power to each subcarrier,
yields

Ln =
Pmax

N
+

1
gn

(14)

where Ln denotes the initial water level of each subcarrier.
We denote the average ofLn’s by L̄. Therefore we have

L̄ =
1
N

N∑
n=1

(
Pmax

N
+

1
gn

) (15)

Power allocation according to the average water level,L̄, is
given by

Pk,n = L̄− 1
gn

(16)

Negative powers in 16 introduce error to the final water level.
In order to overcome to this problem, we should share the
negative powers among strong subcarriers. In this respect,
we average the negative powers over strong subcarriers to
be added to the average water level. The avarege of negative
power levels over strong subcarrier is given by:

L̃ =
1
|D|

∑
n∈D̄

Pk,n (17)

Adding theL̃ to average water level of subcarriers, yields the
final water level,Lfinal, as

L̄ + L̃ = L̄ +
1

N − ¯|D|

∑
n∈D̄

Pk,n (18)

= L̄ +
1

N − ¯|D|

∑
n∈D̄

(L̄− 1
gn

)

= L̄(1 +
¯|D|

N − ¯|D|
)− 1

N − ¯|D|

∑
n∈D̄

1
gn

=
N

N − ¯|D|
L̄− 1

N − ¯|D|

∑
n∈D̄

1
gn

combining (15) and (18) yield:

L̄ + L̃ =
1

N − ¯|D|
(
Pmax

N
+

N∑
n=1

1
gn

)− 1
N − ¯|D|

∑
n∈D̄

1
gn

(19)

=
1

N − ¯|D|
(
Pmax

N
+

∑
n∈D

1
gn

)

=
1
λ

Therefore
λ =

1
L̄ + L̃

(20)

IV. D ISTRIBUTED POWER ALLOCATION ALGORITHM

As discussed above, optimal power allocation in an ad-
hoc network necessitates performing waterfilling in a dis-
tributed manner. In order to perform multi-level waterfilling
distributedly, each node should have knowledge about its own
water level, i.e.αk

λ . Intuitively, we may think of multi-level
waterfilling as the classical one, by scaling noise and power
of userk with 1

αk
. The larger the weight of userk, the more

would be the power, and the network has more incentive to
allocate power to it. In other words, nodes with large weights
have permission to announce their SNR scaled byαk in order
to absorb more water from available resources. Based on the
above heuristic, all nodes only need to have agreement on the
value of 1

λ . Toward this, we propose a distributed algorithm to
reach a consensus on the value of1

λ . Our algorithm is based
on distributed averaging calledconsensus averagingwhich
calculates the average of a group of nodes in a distributed
fashion by reaching a consensus among them.

The problem of distributed averaging has been extensively
studied recently in the context of data fusion over networks. So
far several ways for distributed averaging have been proposed
[9], [15], [16]. In this paper, we adopt the method proposed
by Xiao et al. [15] which involves single-hop transmissions
and requires local information of the network. In the method
presented in [15], each node exchanges its data with its
neighbors and updates its data according to a weighted sum
of its data and that of its neighbors, iteratively. The update
equation can be written as [15]

xi(t + 1) = Wiixi(t) +
∑
j∈Ni

Wijxj(t) (21)

where xi(t) represents data of nodei after t iterations and
Wij ’s denotes the weights of useri. Aforementioned updating
in each node continues until convergence is achieved. It has
been proved [15] that with appropriate choice of weights and
after large enough iterations, all nodes’ data will converge to
the average of the entire network, even though nodes only have
local information about the network. In this respect, nodes
can obtain knowledge about the value of a parameter which
requires complete information of all nodes, such as water level
in the waterfilling.

It should be noted that there are several choices of weights
( [9], [15]). One famous and simple one is Metropolis which
requires only local information and converges very fast com-
pared to other ones. Metropolis weight matrix is defined as:

Wij =



1
1+max{di,dj} {i, j} ∈ Ni

1−
∑

i,k∈Ni
Wik i = j

0 otherwise.

(22)

The weights in (22) is applicable for averaging with uniform
weighting. Therefore, usage of (22) is restricted to uniform
subcarrier assignment schemes. In order to evaluate a weighted
average of nodes’ data, which is useful for non-uniform



subcarrier assignment schemes, the update equation 23 should
be modified as the following

xi(t + 1) = Wiiβixi(t) +
∑
j∈Ni

Wijβjxj(t) (23)

whereβj denotes the sharing weight ofxj in the averaging.
For simplicity, we embed theβj factor in the initial values
of data. For a non-uniform subcarrier assignment scheme, the
proposed algorithm initializes with an initial water level given
by

L1k = βk(
Pmax|Sk|

N
+

∑
n∈Sk

1
gk,n

) (24)

The proposed algorithm performs distributed multi-level
waterfilling. The algorithm, motivated from Theorem 1, has
two major loops. The first loop is devoted to evaluate the
average water level of all subcarriers iteratively, based on the
consensus averaging with modified Metropolis weights. As
mentioned above, the average water level of all subcarriers
is equivalent to a weighted average of nodes’ water. At the
end of first loop, each node knows the average water level
of all subcarriers. In the next step, each node performs a
waterfilling according to the derived average level of water.
In high SNR regime over entire bandwidth, all subcarriers
will be waterfilled with a positive value of water (i.e. power),
but if some of subcarriers have low SNR values, they may be
waterfilled with negative power and thus they can introduce
errors to the exact water level. The error introduced is more
critical when more subcarriers suffer from such low SNR
values. In order to correct the error inroduced in the average
water level, each node measures the negative power (water)
it has already assigned to its weak subcarriers averaged over
other subcarriers. In the next loop, all nodes try to find the
average of the error, iteratively. Finally, according to Theorem
1, each node calculates the final water level by adding the
average error to the average water level measured in the first
loop and then scale the result according to its weight in the
maximization. The algorithm terminates with power allocation
according to the final water level. The proposed distributed
optimal power allocation is shown below as algorithm 1.

V. SIMULATION RESULTS AND ANALYSIS

In this section, performance of the proposed algorithm
is analyzed through simulation and is compared with the
centralized scheme. We have considered a network of16
randomly placed nodes over[0, 100] × [0, 100] field with a
connectivity degree0.35, which defines the range in which
nodes can see each other. In other words, nodes with distance
not more than0.35, are assumed connected. Each node wants
to transmit or relay data to its destination(s) according to a
routing policy. We also assume that total system bandwidth is
10MHz and there are 64 subcarriers in the OFDM system. The
noise power spectral density at each subcarrier is10−14W/Hz
and the SNR gap is supposed to be8.8dB. Assuming fixed and
uniform subcarrier assignment, each node has to send its data
over a set of4 predetermined subcarriers.

Algorithm 1 Consensus Power Allocation
Initialization
x1k(0) = βk(

Pmax|Sk|
N

+
P

n∈Sk

1
gk,n

)

Step 1

While t < max iteration AND status 6=converged

x1k(t + 1) = Wkkx1k(t) +
P

j∈Nk
Wkjx1j(t)

end while

Step 2

x2k = βk
|Sk|−|S̄k|

P
n∈S̄k

Pk,n

While t < max iteration AND status 6=converged

x2k(t + 1) = Wkkx2k(t) +
P

j∈Nk
Wkjx2j(t)

end while

Step 3
Lk = αk(x1k + x2k)

for n ∈ Sk

P ?
k,n = [Lk − 1

gk,n
]+

end for
end
Algorithm 1. Consensus Power Allocation

hij =
Gijαij

d4
ij

(25)

We consider an environment with path loss and rayleigh
fading and adopt the channel model presented in [8]. In
this respect, the channel coefficient from nodei to node j
is modeled as whered−4

ij and αij represent the path loss
and rayleigh fading parameters, respectively. Transmitter and
receiver antenna gains are combined in theGij factor. In order
to maximize the overall data rate while trying to allocate equal
rate to all nodes,αk ’s are assumed to be1. Sum of the user’s
data rate with the proposed power allocation and uniform
power allocation for a wide range of values ofPmax is depicted
in Fig. 2. Performance improvement which is defined as the
ratio of increase in the overall rate and total rate is also shown
in Fig. 3. It is worth noting that as total transmit power,Pmax,

Fig. 2. Sum of User’s Data Rate vs. Total Transmit Power



Fig. 3. Proportional Rate Increase vs. Total Transmit Power

Fig. 4. Convergence Behaviour

increases, the achieved gain diminishes and uniform power
allocation becomes optimal. Fig. 4 shows the convergence
behavior of the proposed algorithm averaged over all nodes.
As shown in Fig. 4, it is clear that the proposed algorithm
converges very fast thanks to good convergence behaviour of
Metropolis weights. When small errors are acceptable, the
algorithm converges with a few iterations and therefore its
overhead becomes negligible. In this respect, it is clear from
Fig. 4 that even with small iterations, centralized scheme
achieves slightly better performance with regard to distributed
scheme and hence performance degradation of distributed
algorithm is negligible.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a distributed power allocation
algorithm for OFDM wireless ad-hoc networks with fixed
subcarrier assignment in order to maximize a weighted rate-
sum of nodes. The proposed algorithm is based on reaching
a consensus among nodes for thelevel of waterto perform a
multi-level waterfilling in each node. The proposed algorithm

converges fast and is tractable from computational complexity
point of view. Simulation results confirm that the performance
degrdation introduced by distributed power allocation is quite
small with regard to centralized scheme. In order to increase
the convergence rate of the proposed algorithm, adaptive
weights can be used as proposed in [17], for consensus aver-
aging in the algorithm instead of Metropolis. As an extention
to current paper we are considering joint power allocation and
subcarrier assignment in ad-hoc OFDM network, distributedly.
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