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Abstract—Wired and wireless data networks have witnessed
a rapid proliferation of multimedia applications such as live-
streaming applications, video conferencing, etc. A desirable key
feature for multimedia transmission over multiuser environments
with heterogeneous users is the ability of adapting rate and qual-
ity of video stream to different QoS conditions. The most efficient
approach to address the scalability of multimedia applications is
to encode video stream in compliance with Scalable Video Coding
(SVC) standard, which is proposed as an extension to H.264/AVC
standard. This paper addresses the utility-proportional opti-
mization for multimedia applications that are relying on SVC-
encoded video signals. We use the staircase utility function to
analytically model the SVC-encoded multimedia applications and
formulate the underlying optimization problem. Non-convexity
of the optimization problem for such applications makes dual-
based approaches incompetent, whereby achieving optimality
proves quite challenging. We use a smooth approximation of
the utility function to come up with a convex formulation and
propose a dual-based distributed algorithm for rate allocation
and bandwidth sharing in such scenarios. Numerical results are
proposed as the support to the proposed rate control algorithm.

I. INTRODUCTION

Over the past decades, data networks have witnessed a rapid
proliferation in the usage of multimedia applications. Today,
a plethora of such applications exists that include multimedia
messaging, video telephony, and video conferencing over mo-
bile TV, wireless and wired Internet video streaming, standard
and high-definition TV broadcasting.

Emergence of these applications has led to new demands for
QoS-provisioning in different networking scenarios. In order
to tackle this issue, many technical challenges have to be
addressed in the two areas of multimedia and networking.

A. Multimedia Transmission

For multimedia applications, the traffic characteristics of
the underlying video stream usually demands for tight QoS
requirements in terms of rate and delay. Throughput variation
often occurs in many networking paradigms, ranging from
wireless to wired ones. In wired networks such variations
mainly stem from network congestion while in wireless net-
works this mainly occurs temporarily due to channel quality
degradation caused by fading or shadowing. All of these make
multimedia transmission over data networks quite challenging.
On the other hand, a desirable key feature for multimedia
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transmission over multiuser environments is the ability to
adapt the quality of the video signal on a per-user basis [1].

The essential remedy to both of the abovementioned issues,
i.e. rate and quality adaptation, is to exploit video streams
encoded in compliance with the Scalable Video Coding (SVC)
standard [2], [3]. Scalable Video Coding (SVC) standard has
been proposed as an extension to the famous H.264/AVC stan-
dard [4]. SVC features temporal, spatial and PSNR scalability
of a decoded video signal through rate adaptation of the bit
stream.

In this respect, from this point of view, SVC encoded-
video streams are capable of adapting rate and quality so as
to combat throughput variation and to exhibit several classes
of quality for to be appropriate for heterogeneous clients.

B. Network Utility Maximization Approaches

Following the seminal work by Kelly et al. [5], the optimiza-
tion flow control approach was proposed by Low et al. [6], in
which the optimal rate allocation of a (wired) data network
under elastic traffic was modeled and led to a dual-based
distributed algorithm for rate allocation both in synchronous
and asynchronous environments. Within the previous decade,
the work by Low et al. [6] has been followed by the network
research community and led to a general optimization frame-
work known as Network Utility Maximization, abbreviated
as NUM (see [7] and references therein). The underlying
assumption of these works is that the network traffic is elastic,
whose characteristics can be modeled by a continuous and
strictly concave utility function [8]. Such utility functions,
make the problem convex and thereby tractable for optimality
analysis.

On the other hand, multimedia applications inherently admit
inelastic flows which require tight performance guarantees in
terms of rate and delay. For such flows, utility function is
shown to be non-concave and even discontinuous [8]- [11].
Non-concavity and discontinuity of such utility functions yield
non-convex and non-differentiable NUM problems, for which
conventional optimization approaches proves quite incom-
petent. In particular, for multimedia applications supporting
layered encoding schemes, the utility function is shown to
admit a staircase-like function, as shown in Figure 1 in solid
line [12]. Amongst such applications are streams complying
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Fig. 1: Staircase Utility Function (solid line) and Multimodal
Sigmoid Approximation (dashed line)

to SVC and FGS standards [13], both observed in the most
of today’s multimedia streaming applications. Therefore, as
Figure 1 implies, SVC-encoded applications are associated
with a non-concave and discontinuous utility function, whose
generic form looks like the staircase-like function in Figure 1.

C. Our Contribution

Our contribution in this paper is two-fold. First, our focus
is on modeling a smoothed and continuous utility function
for SVC-encoded multimedia. Towards this, we introduce
multimodal sigmoid approximation as a well-behaved utility
function to be used for SVC-encoded multimedia. With the
abovementioned approximation approach discontinuity of the
staircase utility function will be remedied, however non-
concavity problem still holds which later will result in a non-
convex NUM. In order to come up with a convex formulation,
we formulate the rate allocation optimization problem using
the concept of wutility-proportional optimization flow control
proposed by Wang et al. [12] instead of the basic form of the
NUM. Following this formulation allows us to devise a dual-
based distributed rate allocation algorithm as the solution to
the optimization problem. Numerical results present a proper
validation of our endeavor in achieving a distributed solution.

D. Paper Organization

The rest of the paper is organized as follows. Section II
reviews related work. Section III describes the system model.
Section IV is devoted to approximate the ideal non-concave
utility function and formulate the underlying optimization
problem. Section V investigates the optimality condition and
the optimal solution and presents a dual-based distributed al-
gorithm as the solution to the optimization problem. Numerical
results are presented in Section VI and VII concludes the paper
and outlines some future directions.

II. RELATED WORK

Providing quality of service for video streaming applications
in wired and wireless networks has been a pivotal problem of
many research communities. In particular, quality-of-service
requirements in terms of rate and delay have been amongst of
such research interests. Dealing with such challenges have led
to several video adaptation schemes in video coding research
community, as well as rate-based flow control schemes for
inelastic flows in networking research community. Within the
last decade, video adaptation techniques that are based on
layered encoding schemes are mainly investigated in the cate-
gory of scalable video coding [14], [15] and Fine Granularity
Scalability (FGS) [13] techniques. Some rate-distortion (R-
D) models of Fine-Granular Scalability (FGS) encoder (an
accepted standard scalable video coding scheme for the video
streaming profile in MPEG-4) is investigated in [16].

In the course of past years, a lot of recent studies have
dealt with multimedia applications through modeling the traf-
fic characteristics of such applications. Huang et al. [17],
proposed a resource allocation solution for multiuser video
streaming over cellular wireless networks. They developed a
NUM framework with a resource pricing algorithm via previ-
ous well-established dual-based algorithms. The resource price
is obtained in turn, is used to derive source content adaptation
to each user, using video summarization techniques [18]. In
[19], a content-aware distortion-fair networking framework
with joint video source adaptation and network resource allo-
cation is developed. A basic difference in this work is that an
explicit utility function for sources is not considered. Instead,
a content-aware time-varying utility function is chosen that is
different per each frame as well as for each video content.
Based on the idea of dropping less important frames when
the network is congested, a distributed iterative algorithm is
proposed to achieve min-max distortion fairness. The main
superiority of this work is taking into account the special
characteristics of video content such as dependency between
frames.

Furthermore, several flow control schemes are proposed to
tackle the problem of multimedia transmission over wired and
wireless networks. In [20], a mechanism for dealing with loss
in scalable video transmission over best-effort lossy network
channels using forward-error correction (FEC) mechanisms is
proposed. Also, a dynamic controller on the amount of FEC
that maximizes the utility of scalable video is constructed.
Media-friendly and TCP-friendly congestion control schemes
for scalable video streams are investigated in [21]. It borrows
well-established utility-based optimization flow control model
as the underlying framework and adopts a two-fold time-
scale approach, which can optimize the video quality in short
term (multimedia-friendliness) and meet the TCP-friendliness
in long term. Although network utility maximization for the
scalable video coding is considered in [21], this work differs
with ours in that we model the staircase utility function for
SVC-encoded applications, which captures more efficiently the
characteristics of such applications.



III. SYSTEM MODEL

We consider a network comprising a set of sources denoted
by S = {1,...,5} and a set of unidirectional links, denoted
by £L={1,...,L}. Let x5 and ¢; be the source rate for source
s and capacity of link /, both in bps, respectively. Without loss
of generality, we assume that the rate of source s is limited
so as to certify

0<ms <zy <M <00 (1

where m, and M, denote the minimum and maximum rates
for source s, respectively.

We associate with source s a path, i.e. a set of links
L(s) C L, that determines the links that source s passes
through. Similarly, we define S(I) C S, to be the set of sources
traversing link [. For the sake of simplicity, we define the
routing matrix as R = [Rys| x5, where Ry is defined as

1
Rls—{ 0

Thereafter, we will follow this notation, unless stated other-
wise.

To simplify the analysis and not relying on any particular
flow control and packet scheduling scheme, rate control is
ideally accommodated by congestion in links.

We assume that source s, when submitting at rate x4, attains
a utility Us(xs), which used to quantify its benefit, in terms
of QoS, rate requirements, etc. Best Effort traffics, such as
traditional file transfer, can be modeled using continuous and
strictly concave utility functions, that make them tractable to
be dealt with conventional optimization approaches [6]. On the
other hand, Guaranteed Service streams, such as multimedia,
demand for tight QoS requirements, in terms of rate, delay,
jitter, etc. which cause their utility functions to be non-
concave and even discontinuous. Such utility functions yield
non-convex optimization problems that cannot be dealt with
conventional optimization approaches.

As stated before, in this study we assume that each source s
is in possession of a multimedia application which uses SVC-
encoded video stream. This is equivalent to saying that each
source s is capable of adapting the rate and quality of the video
stream in accordance to the conditions charged by the network
or to the user preferences. In particular, source s might choose
a lower encoding scheme than the current one, so as to combat
against network congestions, or might choose a higher one
whenever additional bandwidth is available.

For multimedia applications supporting SVC standard, rate
allocation is limited to distinct levels of utility, i.e. the utility
function is increased only when a higher layer can be delivered
due to increase in the available bandwidth. As stated before,
the utility function of such applications can be ideally charac-
terized using a non-concave and discontinuous utility function
referred to as staircase utility function, which is shown in
Figure 1 in solid line.

In order to deal with such utility functions, we use a
smoothed approximation of them, the idea behind which is
shown in Figure 1 in dashed line. In this figure, the curve

if source s passes through link [
otherwise
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in dashed line represents the smoothed approximation of the
staircase function. In order to construct such a smoothed
approximation, we divide its domain into non-overlapping
intervals, so that a step transition occurs within the midpoint
of each interval. The step transition ¢, i.e. the part of the curve
in which utility function jumps from level 4, (i.e. U(x) = i), to
level i+1, (i.e. U(x) = i+1) is smoothed and approximated by
a sigmoid-like function, whose point of inflection corresponds
to U(z) = 4.

Sigmoid-like functions have been well studied in the field of
neural networks. The most commonly used form of sigmoid-
like functions is the logistic function defined as

1

F(l‘,a,ﬁ)zm

3)

It is easy to show that (3 is the inflection point of F' such
that for ¢ < 3, F is convex, and for x > (3 it is concave.
Moreover, o« > 0 is a parameter that determines the sharpness
of the curve. In order to efficiently model the behavior of a
step transition, o must be chosen sufficiently large so as to
effectively capture the sharp transition of an increase in the
utility level.

Using the sigmoid-like function introduced above, we then
represent the approximation shown in Figure 1 in dashed line.
Recall the interval division of the domain introduced above.
Then, for the step transition ¢, i.e. jump from U(z) = i to
U(xz) =i+ 1, we have,

k

x € [kifg,kwr—] 4)

U(x):F(az,a,ki)Jri; 5

where U(.) denotes the approximation to the original utility
function and [ki— %, ki+ £] is the interval in which transition
i occurs. It’s worth mentioning that %k is the required rate
increase to advance the utility U by 1. Hence, 1/k can be
thought of as the slope of the straight line passing through the
midpoint of step transitions.

Combining all of the intervals and assuming that the least
utility level is 1, we get

F(z,o,k)+1 velk—Ek+5

h
|

F(z,o,ki)+i = [kifg,kug] 5)

F(z,a,kN)+ N z€[kN — £ kN + £

where it is assumed that the domain is divided into N equal
intervals, corresponding to N encoding layers.

In statistics, a sigmoid-like function, which is in possession
of a single point of inflection, is usually referred to as
unimodal function. Our approximated staircase utility function
is comprised of several sigmoid-like functions, and thereby has
several points of inflection. Thus, it is a multimodal function
as opposed to the unimodal case. In this respect, we refer to
this approximation as the multimodal sigmoid approximation.
The multimodal sigmoid approximation presented above is



discontinuous in general; however, if « is chosen sufficiently
large, discontinuity gap between the contiguous steps vanishes
and thereby makes it continuous, as Figure 1 depicts.

Sources in the network may demand for different QoS
requirements; hence, it makes sense that each source s, would
advance its utility according to its own k, factor, which may
differ from the others. Therefore, the (approximated) utility
function of source s is

ﬁs($s> = U(xaaaks) (6)

where U is defined by (5) and k,; and o were omitted from
the notation.

IV. PROBLEM FORMULATION

We model the rate control for SVC-encoded applications
as the solution to an optimization problem. As stated in the
previous section, to deal with non-differentiable behavior of
staircase utility functions of such multimedia applications, we
introduced the multimodal sigmoid approximation. However,
non-concavity of the aforementioned approximated utility re-
sults in a non-convex optimization problem.

In order to deal with non-concave approximated utility
function, we use the utility-proportional optimization approach
introduced by Wang er al. [12]. They proposed a novel
application-oriented utility optimization formulation to address
fairness and as a remedy to convexify specific forms of
non-concave utility functions. By adopting utility-proportional
formulation, the underlying optimization problem can be for-
mulated as [12]:

S

Ts wedz
max / (7
xXEX = Ims U5<Z)
subject to:
Y Riws<a; lel ®)

where X = A} x A5 x ... x X denotes the Cartesian product
of all rate domains X; = [mg, M|, and w, is a positive
weight factor assigned to source s to address its priority in
rate allocation.

The constraint (8) states that the sum of rates passing
through link [ cannot exceed its capacity. Focusing on the
SVC-encoded applications and recalling multimodal sigmoid
approximation in Section III, we rewrite the optimization
problem as

S
s wedz

- ©)
s=1 /ms UG(Z)

ZRZSIS < Cl; lel

max
xeX

subject to:
(10)

where f]s(.) is defined by (5) and (6). Using elementary
calculus, for the objective of (9) we get

S5 L reet

s=1is,=1

dz (11)

where

ks
=)
Moreover, the optimal rate for source s and its corresponding
layer are denoted by z¥ and ¢}, respectively.

We defer solving the optimization problem until the next
section.

ks . .
D;, = {z|ksis — Y < z < min(zs, ksis + (12)

V. OPTIMAL RATE CONTROL
A. Convexity

We first investigate the convexity of problem (9)-(10). The
result is stated in the following theorem.
Theorem 1: The problem (9)-(10) is strictly convex and
admits a unique maximizer.
Proof: For proof see Appendix L. [ ]

B. Optimal Solution

In this subsection, we derive the optimality conditions. We
start by writing the Lagrangian of (9). Using the standard
optimization methods [22], the Lagrangian of the problem (9)
can be written as

L(x,\) = (13)

/ W
dz
€D, F(z,a,kgis) +is

)

where )\; is the positive Lagrange multiplier associated with
the corresponding constraint of link [ and A\ = (\;,] € £) is
the vector of Lagrange multipliers.

According to Theorem 1, the problem (9)-(10) is strictly
convex and admits a unique maximizer, denoted by x* =
(z%,s € S). Based on KKT Theorem [22], at the optimal
point, the following conditions must be satisfied

€1—1

vxL(X, )‘)|(X*,X“) =0 (14)
Y Rix;<a;  leL (15)
Al > 0; le Ll (16)
AS (Z Risxt — cl> =0; lel (17)
where 0 is a vector, all of whose elements are zero.
Substituting (13) into (14) yields
oL s
v (18)

= — Rs)\
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T Ds - Z R\ =0
]

Oxg

1+e—a(:cs—ks7‘,s) + 1s

Doing some algebraic manipulations, for the optimal source

rate we get
1 AS
= [k’sz; — ~log ( - 1) } (19)
a Wg — ASTE X,



where
A=) Rish (20)
!
and [.]x, is the projection operator on the Xj.
Since the argument of the logarithm should be non-negative,
1*s must satisfy the following condition

)\S
—>1 21
Ws — A51E - 21
which results in v
™ Ws —
i =51 (22)

Although problem (9) can be separated among sources, its
constraints will remain coupled across the links over the
network. The coupled nature of such constrained problems,
necessitates usage of centralized methods like interior point
method which poses great computational overhead to the
system [22] [23].

In order to come up with a distributed solution, we solve
the problem through its dual problem. The dual problem is
defined as

min D(A)

min (23)

where D()) is the dual function and is defined as the maxi-
mum of the Lagrangian over x, i.e.

D(\) = max L(x, \)

xeX

(24)

Problem (24) is an unconstrained optimization problem and is
already solved by x*. Therefore, the dual function is given by

D(A) = L(x", \) (25)

where % is given by (19).

C. Solving Dual Problem

Now we are ready to solve the dual problem (23). According
to the duality theory, dual problem is always convex regardless
of Non-convexity of the primal problem. However, strict
convexity of the primal problem (9) guarantees strong duality,
i.e. assures that solving the dual results in the optimal solution
of the primal [22] [23].

In order to obtain a distributed solution with low compu-
tational complexity, we will solve the dual problem using
gradient projection method [23]. For an unconstrained min-
imization problem, the gradient projection method iteratively
steps toward the opposite direction of the gradient of the
objective of the problem. Therefore, for the dual problem (23),
we get

A — N _ v DO F (26)
or equivalently,
dD(AM)TT
A — [y -, 8D0T) 27)

O\

where \(V) = ()\l(t),l € L) is the value of A at tth iteration
step, v is a constant step size and [z]T = max(z,0).

According to Theorem 1, the objective of problem (9)
is strictly concave, hence (24) is continuously differentiable
( [24], pp. 669) with derivatives given by

oD(\®

) _ (t)
E Rz 2
N a d 15T (28)

Substituting (28) into (27) yields

+
/\l(tH) = [/\gt) — (Cl - Z Rlﬂfﬁ) } (29)

The two update equations (19) and (29) obtained above,
form an iterative solution to the (9). In the next subsection,
we will discuss the algorithmic aspects of such an iterative
solution.

D. Optimal Rate Control Algorithm

In this subsection, we propose a distributed algorithm based
on the iterative solution obtained above.

Optimal source rate equations, i.e. (19) and (22), and
shadow price' update (29), derived in the previous section,
can be used in conjunction with each other to form an iterative
algorithm as the solution to the optimization problem (9)-(10).

For each time slot ¢ (or iteration step t), the following key
steps exist in the algorithm:

1) Each link [ calculates its corresponding Lagrange mul-
tiplier (shadow price) for the next time slot, i.e. )\l(tﬂ),
based on its previous shadow price and its aggregate
traffic in the current time slot.

2) Each source s calculates its rate based on the aggregate
shadow price in its path.

3) Each source s transmits the packets based on the allo-

cated rate.

The rate control algorithm can be described as follows. For
each link [/, shadow price ); is updated according to (29)
and the new shadow price result is communicated to sources
traversing this link. Each source s receives from the network
the shadow prices for links on its path and calculates \® using
(29), chooses a new source rate using (19) and (22), and
communicates this new rate to all the links in its path. The
procedures at the links and the video sources are repeated until
the algorithm converges to the optimal video rates and optimal
shadow prices.

The iterative rate control algorithm is listed as Algorithm
1.

'Lagrange multiplier is usually referred to as shadow price owing to the
economic interpretation of its role to adjust the source rate [5].



Algorithm 1 Rate Control Algorithm for SVC Streams
Initialization
Initialize the following items:

1. Sets of sources and links including

the routing matrix.

2. v and ¢ for l € L.

3. ks, ws for s € S.

Main Loop

(t4+1)

. t
Do until maxg |z xg )| <e€

1. VI € £ Compute new link prices:
A =N =y (o= 8, Rl )1

2. Vs € S Compute new source rates as follows:
s(t) — (®)
A =37 R\

(t41 —_as(®)
R

2D = [ksigt+1) _ élog(

where and [.] x, is the projection operator on the Xs.

As(®) _
wg,)\s(t)igtﬂ)

Output
Communicate source rates to the corresponding sources.

Algorithm 1. Rate Control Algorithm for SVC Streams

VI. SIMULATION RESULTS

The proposed rate control algorithm is examined through
extensive simulation experiments carried out using MATLAB.
Numerous validation experiments have been performed for
several network topology, however, for the sake of specific
illustration, the two following results are only presented.

A. The Single Link Case

For the first scenario we consider a network with a single
bottleneck link. There are five sources in the network, all pass-
ing through a shared link with capacity ¢ = 10 Mbps. Different
sources use different values of k, as a result of different rate
and quality requirements. Recall that ks is the required rate
increase for source s to advance the utility Us; by one. In
this scenario we choose: (k1,...,ks) = (0.5,0.7,0.9,1,1.2).
For the sake of illustration, utility functions corresponding to
different values of k, are displayed in Figure 2. The value
of a for all sources is set to 4 and step size is chosen to
be v = 0.02. For simplicity, weight factors of all users are
assumed to be equal. The rate allocation for this scenario is
summarized in Table 1.

Apart from the steady state rate allocation, one issue of our
interest is the transient behavior of the algorithm. Such tran-
sient behaviors essentially implies the convergence properties
of the algorithm and gives insight of how fast the algorithm

TABLE I: Rate Allocation for Single Link Case

Source ks zs (Mbps)
1 0.5 1.28
2 0.7 1.73
3 0.9 2.12
4 1 2.34
5 1.2 2.74
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Fig. 3: Evolution of The Source Rates for The Single Link
Topology.

converges towards the steady state regime. In order to achieve
this goal, the evolution of source rates is depicted in Figure 3.
Moreover, the evolution of the shadow price (;) is depicted in
Figure 4. Both figures reveal that the convergence is relatively
fast and just as few as 20 iteration steps are needed to reach
the steady state. It is worth mentioning that sources with
larger ks obtain greater rates. This fact is in contrast with the
conventional network utility maximization (NUM), wherein
sources with larger k; would obtain smaller rates.

In fact, in conventional NUM formulations, smaller kg
results in a utility function whose value grows rapidly upon in-
crease in the available bandwidth. Therefore, the optimization
problem allocates available bandwidth so that utility functions
attain larger rates in order to maximize the total utility as much
as possible. However, the utility-proportional formulation used



here somehow regulates bandwidth sharing so that there are
tolerable differences between steady state rates for different
values of kj.
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B. The Multiple Link Case

For the second scenario, we consider a network comprising
of four sources as well as four links, whose topology along
with link capacities are depicted in Figure 5. For this scenario
we choose: (k1,...,kq4) = (1,1.2,1,0.9). « for all sources is
set to 4 and step size is chosen to be v = 0.003.

Rate allocation for this scenario is summarized in Table II.
In order to compare the convergence behavior of this scenario,
which consists of a rather complicated topology with respect
to the latter case, the evolution of source rates is depicted
in Figure 6. This figure shows that compared to the single
link scenario, convergence is achieved at the expense of more
iteration steps. While the achieved rate for some sources
slightly differs after iteration 60, the steady state regime for
others is achieved after iteration 110. The evolution of shadow
prices is shown in Figure 7. As this figure presents, while links
1, 2, and 3 are assigned with a positive non-zero shadow price,
that of link 4 is zero implying that this link is not a bottleneck
and wouldn’t be saturated.

VII. CONCLUSION

With the emergence of a plethora of applications demanding
for multimedia applications, nowadays provisioning services

TABLE II: Rate Allocation for Multiple Link Case

Source ks zs (Mbps)
1 1 6.25
2 1.2 3.15
3 1 2.67
4 0.9 4.16
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with adaptive rate and quality proves quite inevitable. In
this paper we addressed the problem of rate allocation for
SVC-encoded multimedia applications. First, we elaborated
to analytically model an approximated utility function for
SVC compliant multimedia applications. Then, we proposed a
convex optimization formulation for bandwidth sharing and
rate control, which was solved indirectly through its dual
using gradient projection method. This allowed us to devise a
distributed algorithm that can be used to determine the optimal
rate allocation in an iterative manner. The algorithm can be
addressed in distributed scenarios, particularly in the context
of ad-hoc networks, etc. Simulation results validated the effec-
tiveness of the algorithm and verified its rapid convergence.
A possible line for the continuation of this research would be
going into more details of the SVC streams and related factors
such as Qos/QoE. It proves quite challenging how these factors
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will affect the optimal rate control algorithm.
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APPENDIX I: PROOF OF THEOREM 1

To establish the convexity, we first obtain the Hessian of
the objective function. Let us denote the objective of (9) by
U(x). Focusing on the ith interval, the first derivative of the
objective is given by

ou Wy ks . ks
a. ) s € k's.s_77k'ss -
90, Flomohig tin T € hsls =50 kls + 5]
(30)
and for the second derivative term, we have
2 _ ws F' (x5,0,ksis) o
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Now, substituting (3) into (31) yields
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Thus, the Hessian of U(x) is a diagonal matrix, all of whose
diagonal elements are negative, thereby making the Hessian
negative-definite. Therefore, the objective function I/ is strictly
concave.

Constraints (10) are comprised of affine functions, and
thereby all of them are convex. We deduce that the opti-
mization problem (9)-(10) is convex. Since the feasible set
is compact, and the objective is strictly concave, the optimal
solution exists and it is unique as a consequence of convexity.



