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Abstract

In this paper we present a centralized flow control
scheme in NoCs in the presence of both elastic and stream-
ing flow traffic paradigms. We model the desired Best Effort
(BE) source rates as the solution to an α-fair utility maxi-
mization problem which is constrained with link capacities
while preserving Guaranteed Service (GS) traffic require-
ments at the desired level. We propose an iterative algo-
rithm as the solution to the aforementioned problem which
has the benefit of low complexity and fast convergence. We
also explore the stability and convergence behavior of the
proposed algorithm and prove that it is globally asymptot-
ically stable. Such an algorithm may be implemented by a
centralized controller with low computation and communi-
cation overhead.

1. Introduction

The high level of system integration characterizing
Multi-Processor Systems-on-Chip (MPSoCs) is raising the
scalability issue for communication architectures. Towards
this direction, traditional system interconnects based on
shared busses are evolving both from the protocol and the
topology viewpoint. Advanced bus protocols acts in favor
of better exploitation of available bandwidth, while more
parallel topologies are instead being introduced in order
to provide more bandwidth [1]. In the long run, many re-
searchers and SoC designers agree on the fact that this trend
approaches the Network-on-Chip (NoC) as a solution to the
lack of SoCs’ Scalability [2].

Recently, Quality-of-Service (QoS) provisioning in
NoC’s environment has attracted many researchers and
currently it is the focus of many literatures in NoC re-
search community. NoCs are expected to serve as multi-
media servers and are required not only to carry Best Ef-
fort (BE) traffic, but also Guaranteed Service (GS) traffic

which requires tight performance constraints such as nec-
essary bandwidth and maximum delay boundaries.

The Internet Engineering Task Force (IETF), realizing
the limitations of the best-effort model, has undertaken se-
rious steps to meet the QoS demand in the Internet infras-
tructure. Current achievements in integrating more pro-
cessor cores on a single chip have made it possible to
employ these MPSoCs as real time multimedia servers
which require intensive computational power. Thus, it
is imperative to provide in MPSoCs capabilities such as
QoS which has been well available in traditional Internet
servers. This implies that the underlying On-Chip commu-
nication will be required to provide deterministic bounds
on delay and throughput for communication among com-
municating nodes on a chip. Congestion control as a criti-
cal means of providing QoS in traditional data networks is a
well known issue and has been widely studied over the past
two decades. However, it is still a novel problem in NoCs
and to the best of our knowledge only few works has been
carried out in this field [3]. Congestion control, or equiva-
lently, end-to-end flow control in NoCs mainly focuses on
the resource constrained on-chip designs, with the aim of
maximizing network utility while preserving the required
Quality-of-Service (QoS).

The rest of the paper is organized as follows. We dis-
cuss related work in Section 2. In Section 3 we present
the system model and formulate the underlying optimiza-
tion problem for BE flow control. In Section 4 we solve the
underlying optimization problem for a class of utility func-
tions and propose a flow control algorithm. In Section 5
we analyze the convergence behavior of the algorithm and
also investigate its stability. Section 6 addresses the imple-
mentation aspects of the proposed flow control algorithm
in NoCs. Section 7 presents the simulation results. Finally,
Section 8 concludes the paper and states some future work
directions.



2. Related Works

Flow control mechanisms have been well studied in tra-
ditional data networks [4]. A wide variety of flow control
mechanisms in data network belongs to the class of end-
to-end flow control schemes, like TCP/IP, which is mainly
based on the window-based congestion control protocols.
In these protocols, routers and intermediate nodes avoid
the network from becoming congested by means of packet
dropping deterministically (as in DropTail) or randomly (as
in RED). Therefore, sent packets are subject to loss and the
network must aim to providing an acknowledgment mech-
anism. On the other hand, On-chip networks pose different
challenges. The reliability of on-chip wires allows NoCs to
be loss-less. Therefore, there is no need to utilize acknowl-
edgment mechanisms and we face to slightly different con-
cept of flow control.

So far, several works have focused on this issue for NoC
systems. In [3] a prediction-based flow-control strategy for
on-chip networks is proposed in which each router predicts
the buffer occupancy to sense congestion. This scheme
controls the packet injection rate and regulates the number
of packets in the network. In [5] link utilization is used as
a congestion measure and a Model Prediction-based Con-
troller (MPC), determines the source rates.

In this paper, we focus on the flow control for BE traf-
fic as the solution to a utility-based optimization problem.
To the best of our knowledge, none of the aforementioned
works have dealt with the flow control problem through
utility optimization approach. In our seminal work [6], we
have modeled desired BE source rates as the solution to
a utility-based optimization problem with a general form
utility function and aimed at solving the problem using
Newton method. In [7], we have also considered this is-
sue via sum-rate optimization problem and used a different
approach to solve the problem. In this paper we address the
performance analysis of our seminal work [6] with a class
of utility functions, known as α-fair functions, which satis-
fies nice fairness features. We focus on the solution of the
flow control problem and investigate stability and conver-
gence behavior of the solution.

3. System Model and Problem Formulation

We consider a NoC architecture which is based on a
two dimensional mesh topology and wormhole routing. In
wormhole-routed networks, each packet is divided into a
sequence of flits which are transmitted over physical links
one by one in a pipeline fashion. A hop-to-hop credit mech-
anism guarantees that a flit is transmitted only when the
receiving port has free space in its input buffer. We also
assume that the NoC architecture is lossless, and packets

traverse the network on a shortest path using a deadlock
free XY routing [2].

We model the flow control in NoC as the solution to an
optimization problem. For the sake of convenience, we turn
the aforementioned NoC architecture into a mathematically
modeled network, as in [8]. In this respect, we consider
NoC as a network with a set of bidirectional links L =
{1, 2, . . . , L} and a set of sources S = {1, 2, . . . , S}. A
source consists of Processing Elements (PEs), Routers and
Input/Output ports. Each link l ∈ L is a set of wires, busses
and channels that are responsible for connecting different
parts of the NoC and has a fixed capacity of cl bps. We
denote the set of sources that share link l by S(l). Similarly,
the set of links that source s passes through, is denoted by
L(s). It is clear that s ∈ S(l) if and only if l ∈ L(s).

As discussed in Section 1, there are two types of traffic
in a NoC: Guaranteed Service (GS) and Best Effort (BE).
For notational convenience, we represent the BE and GS
traffic rates by xs and ys, respectively. Each link l ∈ L
is shared between the two traffics. GS traffics will obtain
the required amount of link capacity and BE traffics benefit
from the remainder.

We assume that source s upon transmitting BE traffic at
xs bps, will acquire a utility of Us(xs). Our objective is to
choose BE rates so that to maximize the sum of utilities of
all BE traffics while satisfying capacity constraints. Hence
the maximization problem can be formulated as [8]:

max
xs

∑
s∈S

Us(xs) (1)

subject to: ∑
s∈S(l)

xs + ys ≤ cl; ∀l ∈ L (2)

xs ≥ 0; ∀s ∈ S (3)

whereUs is a positive, strictly concave and increasing func-
tion of BE rate. Optimization variables are BE rates, which
in vector form is denoted by x = (xs, s ∈ S) and is in RS

+.
(RS

+ denotes nonnegative real).
The constraint (2) states that the sum of BE rates pass-

ing through link l cannot exceed its free capacity, i.e. the
portion of cl which hasn’t been allocated to GS traffic.
With the above assumptions, problem (1) is a convex op-
timization problem with linear constraints. Hence it admits
a unique maximizer [9] [10]; i.e. there exists an optimal
source rate vector, x∗, so that to maximize the sum of util-
ities in problem (1) while satisfying capacity constraints.
Us in the economics literature is referred to as utility

function, hence problem (1) is called a utility maximiza-
tion problem. There are many choices for utility function
with specific properties and behaviors. In this paper we
will focus on a class of utility functions which are known



to have nice fair properties in terms of economics terminol-
ogy. These functions are known as α-fair utility functions
and defined as [11]:

U(x,ws, α) =

{
ws

x1−α
s

1−α α 6= 1
ws log xs α = 1

(4)

where α > 0 is a parameter and ws is a weight factor as-
signed to source s.

Regarding the definition of α-fair utility functions (4),
it can be easily verified that they satisfy abovementioned
assumptions and thereby can be selected as the choice of
utility function in problem (1). For notational convenience,
we define ĉl = cl −

∑
s∈S(l) ys. Also, for the sake of sim-

plicity in our derivations throughout this paper, we define
the routing matrix as R = [Rls]L×S , where Rls is defined
as

Rls =
{

1 if l ∈ L(s)
0 otherwise (5)

Thereafter, unless the otherwise is stated, we will follow
this notation. Regarding this, for the aforementioned class
of utility functions, problem (1) can be rewritten as

max
xs

∑
s∈S

ws
x1−α
s

1− α
(6)

subject to: ∑
s

Rlsxs ≤ ĉl; ∀l ∈ L (7)

xs ≥ 0; ∀s ∈ S (8)

It is worthmentioning that although in (6), we have ex-
cluded the case of α = 1; this case can be included as well,
via evaluating the limit of U(w, x, α) when α approaches
1. For the sake of convenience, we carry out our analysis
for α 6= 1, keeping this in mind that if α = 1 is the case,
similar results would be obtained by evaluating the limit
when α approaches 1.

4. Optimal Flow Control Algorithm

In this section, we solve (6) and derive the optimal flow
control algorithm.

Although problem (6) can be separated among sources,
its constraints will remain coupled across the links over the
network. The coupled nature of such constrained prob-
lems, necessitates usage of centralized methods like inte-
rior point method which poses great computational over-
head onto the system [9] [10].

One way to reduce the computational complexity is to
transform the constrained optimization problem into an un-
constrained one, which can be solved efficiently using sev-
eral methods. According to the duality theory [9] [10],

each convex maximization (minimization) problem has a
dual problem. Regarding this terminology, the main prob-
lem is retroactively called primal problem. Optimal solu-
tion of the dual leads to an upper bound (lower bound) to
the optima of the primal. With certain conditions (such as
strong convexity) such an upper bound (lower bound) is
tight and hence solving the dual is equivalent to solving the
primal [9]. However, as the dual problem can be defined in
such a way to be unconstrained, solving the dual is much
simpler than the primal.

In the sequel, we will obtain the dual of problem (6) and
solve it using an efficient iterative algorithm.

4.1. Deriving The Dual

We start by writing the Lagrangian of (6). Using the
standard optimization methods [9], the Lagrangian of the
problem (6) is given by

L(x, λ) =
∑
s

ws
x1−α
s

1− α
−
∑
l

λl

(∑
s

Rlsxs − ĉl

)
(9)

where λl is the positive Lagrange multiplier associated with
the corresponding constraint of link l and λ = (λl, l ∈ L)
is the vector of Lagrange Multipliers and belongs to RL

+.
In economics literature, λl is called shadow price [8] for
the interpretation of its role in solving the primal problem
via its dual. We later will discuss about this issue.

Regarding the Lagrangian, the dual function is defined
as [9]:

g(λ) = max
xs

L(x, λ) (10)

Duality theory states that the optimal source rate vector, x∗,
corresponds to the optimal Lagrange multiplier vector, λ∗

[9] [10]. In other words, if x is a feasible point of the primal
problem and x is primal-optimal, the corresponding λ will
be dual-optimal and vice versa. Therefore, at optimality we
have

∇xL(x, λ)|(x∗,λ∗) = 0 (11)

where 0 is a vector with all zero. From (9), we have

∂L

∂xs
|(x∗,λ∗) =

d

dxs

(
ws

x1−α
s

1− α

)
|x∗s −

∑
l

Rlsλ
∗
l = 0 (12)

Hence, the optimal source rate is given by

x∗s =
(

ws∑
lRlsλ

∗
l

) 1
α

(13)

From (13) it’s apparent that x∗s is a decreasing function of
λl; therefore λl can be construed as the price which must be



paid for the source rate xs. As the nature of such a price is
hidden to the sources from the primal problem perspective,
it is called shadow price. Substituting x∗s into (9) yields

g(λ) =
∑
s

(
w

1−α
α

s

1− α
− w

1
α
s

)(∑
l

Rlsλl

)α−1
α

+
∑
l

λlĉl

(14)

=
∑
l

λ
α−1
α

l

∑
s

Rls

(
w

1−α
α

s

1− α
− w

1
α
s

)
+
∑
l

λlĉl (15)

The dual problem is defined as [9]:

min
λl≥0

g(λ) (16)

The dual problem is always convex regardless of convex-
ity or non-convexity of the primal problem. Moreover, the
dual problem can be defined to be unconstrained or con-
strained with simple constraints, as with above. Thus, the
primal has been transformed into an unconstrained convex
optimization problem.

Convexity of the primal problem (6) guarantees strong
duality. Therefore the duality gap is zero; i.e. solving
the dual leads to the optimal point of the primal [9] [10].
Since dual problem is convex, it admits a unique mini-
mizer, which can be obtained using iterative methods. As
the dual problem is unconstrained; solving (16) using iter-
ative methods is much simpler than the primal.

We postpone solving (16) to the next subsection.

4.2. Solving The Dual

In this subsection, we will solve the dual problem using
gradient projection method [10].

The gradient projection method adjusts shadow prices,
i.e. Lagrange multiplier vector, in opposite direction to the
gradient of the dual function, i.e. ∇g(λ), as follows:

λ(k + 1) =
[
λ(k)− γ(k)∇g(λ(k))

]+
(17)

where γ(k) > 0 in general is a time-varying stepsize, and
[z]+ = max{z, 0}. Since the objective of problem (6) is
strictly concave, g(λ) is continuously differentiable [10],
hence ∇g(λ) exists. Using (15), the l-th element of the
gradient vector is given by:

∂g(λ)
∂λl

=
α− 1
α

λ
− 1
α

l

∑
s

Rls

(
w

1−α
α

s

1− α
− w

1
α
s

)
+ ĉl

= ĉl −
∑
l

Rlsxs (18)

where the last equation is obtained using (13) and alge-
braic manipulations. Furthermore, it can be proved that

for a general form of Us, the same result will be obtained.
Therefore the update equation is given by:

λl(k+1) =
[
λl(k)−γ(k)

(
ĉl −

∑
s

Rlsxs(λ)

)]+
(19)

where xs(λ(k)) is the approximate of x∗s in step k. In
the next subsection, we propose a flow control algorithm
based on the update equation (19).

4.3. Optimal Algorithm

In this subsection, we present a centralized flow control
algorithm for BE traffic in NoC systems which controls the
BE source rates in favor of problem (6). Regarding (19)
and (13), it is clear that they form an iterative algorithm
as the solution to problem (16) and thereby problem (6).
In this respect, optimal source rates for BE sources can be
found while satisfying capacity constraints and preserving
GS traffic requirements. Thus, such an algorithm can be
used to control the flow of the BE sources in the NoC. The
proposed flow control algorithm is listed below as Algo-
rithm 1.

Algorithm 1 has a decentralized nature and can also be
addressed in distributed scenarios. However, due to well-
formed structure of the NoC, we focus on a centralized
scheme; a controller to be mounted in the NoC to imple-
ment this algorithm. The necessary requirements of such
a controller is the ability to accomplish simple mathemat-
ical operations as in (19) and (13) and the allocation of
few dedicated links to communicate congestion control in-
formation to nodes with a light GS load. Later, in Sec 6
we will discuss about the implementation aspects of such a
controller.

5. Performance Analysis

5.1. Stability Analysis

In this subsection, we explore the stability of Algorithm
1. For the system in order to be robust against perturba-
tions in real dynamic environments, e.g. sharp transitions,
the underlying flow control mechanism must be stable. In
the sequel, we show that Algorithm 1 is globally asymptot-
ically stable; i.e. starting at any initial point and after pass-
ing enough iterations, it determines BE source rates which
are in the neighborhood of the optimal rates of (6). Further-
more, after passing infinite iterations, Algorithm 1 results
in the optimal source rates. In other words, for all initial
conditions (xs(0), s ∈ S) we have

lim
k→∞

xs(k) = x∗s; ∀s ∈ S (20)



Algorithm 1 Fair BE Flow Control in NoC
Initialization
Initialize the following items:

1. Sets of sources and links including
the routing matrix.
2. ĉl for l ∈ L.

Main Loop
Do until maxs |xs(k + 1)− xs(k)| < ε

1. ∀l ∈ L Compute new link prices:

λl(k + 1) =
[
λl(k)− γ

(
ĉl −

∑
lRlsxs(k)

) ]+
2. ∀s ∈ S Compute new BE source rates as follows:

xs(k + 1) =
(

ws∑
l Rlsλl(k+1)

) 1
α

Output
Communicate BE source rates to the
corresponding sources.

Algorithm 1. Fair BE Flow Control in NoC

Towards this, we consider a continuous dynamic equation
which models the behavior of the shadow price update
equation (19). In this respect, under the assumption that
the duration of time stamps can be arbitrarily small, we can
interpret the λl(k+1)−λl(k) as an approximate of the rate
at which λl(t) in the continuous time domain evolves, i.e.

λl(k + 1)− λl(k) ≈ dλl
dt
|t=kTs (21)

where Ts is the period of the sampling process or can be in-
terpreted as the duration between two consequent iteration
steps in the run of Algorithm 1. Based on the above discus-
sion, shadow price update equation (19) in the continuous
time model is given by

dλl
dt

= −γ

(
ĉl −

∑
s

Rlsxs

)
u(λl(t)) (22)

where u(.) is the unit step function which is 1 for positive
argument values and 0 otherwise.

In the sequel, we show that the abovementioned
continuous-time system, whose discretized version ap-
proximates our system model, is globally asymptotically
stable; i.e. for all initial conditions (xs(0), s ∈ S), we
have limt→∞ xs(t) = x∗s . To show this, we establish a
Lyapunov function for the dynamical system defined by
(22) and prove that it is globally asymptotically stable.
To prove this property, according to the Lyapunov’s
theorem we must show that the following conditions are
satisfied [12]:

C1: The Lyapunov function, V (x) is positive in its
domain.

C2: dV
dt < 0, ∀x 6= x∗.

C3: dV
dt = 0 only at x = x∗.

The following Theorem states the necessary condition
under which we can find a proper Lyapunov function
for the dynamical system defined by (22) admitting the
conditions C1-C3.

Theorem 1 Given the system (22), assume Us(.),∀s ∈ S
is strictly concave and R has full row rank, i.e. given ρ,
there exists a unique λ such that ρ = RTλ. Then the
unique equilibrium point λ∗ of (22), is globally asymptoti-
cally stable [13].

Proof: See Appendix I for proof.

5.2. Convergence Analysis

In this subsection, we investigate the convergence be-
havior of Algorithm 1. As stepsize has an important role
on the convergence behavior of the update equation (19),
we mainly focus on the effect of stepsize. The conditions
under which Algorithm 1 converges and performance anal-
ysis of the algorithm will be obtained with respect to the
choice of stepsize.

There are several choices for stepsize, each one belong-
ing to a predefined category and having certain advantages
and drawbacks (see [10] and references herein). In the fam-
ily of gradient algorithm for distributed scenarios, stepsize
is usually chosen to be a small enough constant so that to
guarantee the convergence of the algorithm. Constant step-
size is robust in the sense of convergence in time-varying
conditions and asynchronous schemes. Due to its simplic-
ity and robustness, in this paper we focus on the case of
constant stepsize.

The following theorem determines the necessary condi-
tion on the stepsize, under which Algorithm 1 converges
to the neighborhood of the optima of problem (16) and
thereby that of problem (6).

Theorem 2 The iterative flow control algorithm proposed
by (13) and (19) converges to the neighborhood of the op-
timal point of the primal problem (6) provided that

0 ≤ γ ≤ 2αw
c̄α+1L̄S̄

(23)

where L̄ is the length of the longest path used by sources, S̄
is the number of sources sharing the most congested link, w
is the minimum weight of sources and c̄ is the upper bound
on link capacities.



Proof: Proof is omitted due to space limit.

6. Implementation Aspects

In this section we consider the implementation aspects
of the proposed BE flow control algorithm.

As stated earlier, Algorithm 1 can be used as a central-
ized flow control mechanism for BE sources in NoC. In
this respect, we consider a simple controller that can be
mounted in the NoC, whether as a separate hardware mod-
ule or a part of its operating system, which is responsible
for running the algorithm. From computational complex-
ity point of view, such a controller must have the ability of
carrying out simple mathematical and logical operations,
as in Algorithm 1. Another issue worth considering is the
mechanism with which the controller communicates with
BE sources. Since we would like source rate information
be communicated without delay and loss, we designate to
it several GS links to all sources with light load which can
be implemented as a control bus, to communicate the algo-
rithm outputs to BE sources.

Motivated by the end-to-end nature of Algorithm 1, we
briefly discuss about the inherent connection of Algorithm
1 with those used for BE data transmission in distributed
scenarios such as Internet, etc.

Algorithm 1 is very similar to end-to-end congestion
control schemes in data networks, e.g. TCP variants which
are widely used to control BE data flow in the Internet.
Most of end-to-end schemes use the well-known window-
based method, in which each source maintains a window
of packets which are transmitted, but not acknowledged.
Because packets in data networks may be lost due to drop-
ping at the routers or losing because of link failures, desti-
nation should acknowledge the ordered receipt of them in
the current window. Each source changes its window size
in response to congestion signals, i.e. positive or negative
acknowledges or duplicates ones, and thereby avoids the
network to face congestion. Roughly Speaking, the source
rate in each round trip (i.e. the way from a source to its des-
tination and then back to the source for acknowledgment),
is the ratio of window size to the RTT (i.e. duration of the
round trip).

Although flow control in TCP is carried out by means of
window updates, one can derive the corresponding rate up-
dates, too. Algorithm 1 is very similar to rate update in TCP
schemes. Such a close connection stems from the similar-
ity in the underlying flow control problem in both schemes.
However, it is worth noting that unlike TCP, in Algorithm
1 we have not considered any window-based transmission
and acknowledgment mechanism. This is due to the fact
that NoC architecture is lossless, as previously stated in
Section 3, and hence all packets will be delivered success-

fully in the correct order and therefore no acknowledgment
mechanism is needed.

7. Simulation Results

In this section we examine the proposed flow control al-
gorithm, listed as Algorithm 1, for a typical NoC architec-
ture. In our scenario, we have used a NoC with 4× 4 Mesh
topology which consists of 16 nodes communicating using
24 shared bidirectional links; each one has a fixed capacity
of 1 Gbps. In our scheme, packets traverse the network on
a shortest path using a deadlock free XY routing. We also
assume that all sources have logarithmic utility function of
the form log xs. We present our results in the following
subsections.

7.1. Convergence Behavior

One of the most significant issues of our interest, is the
convergence behavior of the source rates. In this subsec-
tion, we have simulated our scheme using 2 different values
for step-size, γ = 1.05 and 0.2, respectively. Weight fac-
tor for all sources is assumed to be unity. The convergence
behavior of source rates for after about 150 iterations is de-
picted in Fig. 1 and Fig. 2. Regarding Fig. 1, it’s apparent
that for γ = 1.05, after 20 iteration steps the source rates
will have very little variations, however, from Fig. 2, i.e.
for γ = 0.2, these threshold of iterations will be at least 85
steps.

In order to have a better insight about the algorithm
behavior, the relative error with respect to optimal source
rates which is averaged over all active sources, is also
shown in Fig. 3. Optimal source rates are obtained using
CVX [14] which is a MATLAB-based software for solving
disciplined convex optimization problems. This figure re-
veals the first step size leads to less than %10 error in aver-
age just after about 13 iteration steps, and after 20 steps the
average error lies below %5. However, the second step size
would reach the two aforementioned error margins at the
expense of iterating for about 60 and 75 steps, respectively.
Although not shown in Fig. 3, with much more iteration
steps simulation results verify that the average error curve
for the smaller step size lies below that of larger step size.

7.2. Effect of The Weight

Another case of our consideration is the role of weight
factor on resource (link capacity) sharing. It is trivial that
network shares its resources in favor of sources with larger
weight factors. In the next simulation experiment, we set
the weight factor of source 2 and 7 to 20. Convergence
behavior and steady state source rates are shown in Fig.
4. Comparing Fig. 4 and Fig. 1 reveals that using larger
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weight factors, source 2 and 7 have achieved larger rates;
however this is done at the expense of reducing the rate
of some other nodes which shared bottleneck links with
source 2 and 7. It is also worth mentioning that such an
asymmetric case, adversely influences the speed of conver-
gence.

8. Conclusion

In this paper we addressed the problem of α-fair flow
control for BE traffic in NoC systems. Flow control was
considered as the solution to the utility maximization prob-
lem which was solved indirectly through its dual using gra-
dient projection method. This was led to globally asymp-
totically stable iterative algorithm which can be used to de-
termine optimal BE source rates. The proposed algorithm
can be implemented by a centralized controller which ad-
mits a light communication and communication overhead
to the system. We have also investigated the convergence
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Figure 4. Source rate convergence for asym-
metric weight factors

behavior of the algorithm. Further investigations of this re-
search would be the development of a distributed controller
and also exploring fairness properties for choosing differ-
ent values of α.
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Appendix I: Proof of Theorem 1

We adopt the proof from [15]. We consider the follow-
ing Lyapunov function

V (x, λ) =
∑
l

(
ĉl −

∑
s

Rlsx
∗
s

)
λl

+
∑
s

∫ ρs

ρ∗s

(
x∗s −

(ws
σ

) 1
α

)
dσ (24)

where
ρs =

∑
l

Rlsxs (25)

To prove the stability of the system, we must show
that V (x, λ) satisfies conditions C1-C3. The satisfac-
tion of C1 immediately results from the fact that both of
cl −

∑
sRlsx

∗
s and λl are positive and (wsσ )1/α is decreas-

ing function of σ. Next, we must prove that dV
dt is non-

positive. Therefore

dV

dt
=
∑
l

(
ĉl −

∑
s

Rlsx
∗
s

)
dλl
dt

+
∑
s

(
x∗s −

(
ws
ρs

) 1
α

)
dρs
dt

= (ĉ−Rx∗)T
dλ

dt
+ (x∗ − x)T

dρ

dt

= (ĉ−Rx∗)T
dλ

dt
+ (x∗ − x)TRT dλ

dt

= (ĉ−Rx)T
dλ

dt

Using (22), the last equality can be rewritten as

dV

dt
= (ĉ−Rx)T

dλ

dt

= −
∑
l

γ

(
ĉl −

∑
s

Rlsxs

)(
ĉl −

∑
s

Rlsxs

)
u(λl)

= −
∑
l

γ

(
ĉl −

∑
s

Rlsxs

)2

u(λl) ≤ 0

Therefore V (x, λ) satisfies C2. It’s worthmentioning that
the last equation guarantees that the algorithm is stable
even though source rates during the process of iterative al-
gorithm might fall within intervals in which link capacity
constraints can be violated. Moreover, dV

dt = 0 only oc-
curs when a link, say link j, is saturated; i.e. for which∑
sRjsxs = ĉj or

∑
sRjsxs < ĉj for which λj = 0.

The two cases only occurs at the optimal Lagrange multi-
plier vector, λ∗, which is unique, as stated earlier. Strong
duality guarantees that the dual-optimal, λ∗, leads to the
primal-optimal x∗. As a result, dVdt = 0 has the unique root
x = x∗. This fact implies that V (x, λ) satisfies C3 and
thereby the system described by (22) (and consequently the
one described by Algorithm 1) is globally asymptotically
stable.


