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Abstract— This paper introduces adaptive consensus, a
spatio-temporal adaptive method to improve convergence
behavior of the current consensus fusion schemes. This
is achieved by introducing a time adaptive weighting
method for updating each sensor data in each iteration.
Adaptive consensus method will improve node convergence
rate, average convergence rate and the variance of error
over the network. A mathematical formulation of the
method according to the adaptive filter theory as well as
derivation of the time adaptive weights and convergence
conditions are presented. The analytical results are verified
by simulation as well.

I. I NTRODUCTION

Sensor networks have recently received much attention
due to their high potential of the formation of the
next generation information gathering and processing
systems. The main focus of this paper is on a spe-
cific method of distributed sensor fusion for unknown
parameter estimation called consensus averaging, and
proposes a new spatio-temporal algorithm to improve the
convergence behavior of previously proposed methods.

Many schemes for distributed data fusion over sensor
networks have been proposed. One simple method is
flooding which requires a large amount of data commu-
nication, storage memory and book-keeping overhead.
Several sophisticated approaches have also been pro-
posed in the context of decentralized detection for a
network of mobile agents [1]. Recently, a new class of
distributed data fusion is proposed which is used in coor-
dination of agents in a network as well as realization of
distributed Kalman filters [2]. The problem of distributed
consensusor agreementamong nodes belongs to this
class of problems [3] [4]. Xiaoet al. [5] have proposed
a simple iterative method for data fusion in sensor
networks based on average consensus, and have applied
it to the problem of unknown parameter estimation in
the wireless sensor networks. Since the aforementioned
method deals only with single-hop transmission, it avoids
many overheads incurred in most distributed schemes.

We consider the problem of unknown parameter es-
timation using a sensor network that consists ofn

randomly distributed nodes over an area. We assume that
each sensor takes a noisy measurement of the unknown
parameter, corrupted by additive white gaussian noise
(AWGN). In a centralized fusion scheme in sensor net-
works, each sensor sends its measurement to a center to
extract the maximum likelihood estimation of unknown
parameter from aggregate measurements of the sensors.
This scheme suffers from communication overheads. In
a distributed fusion scheme in sensor networks, however,
using its own and its neighbors’ measurements, each
sensor calculates a local estimation of the unknown para-
meter which iteratively converges to the intended result.
The maximum likelihood estimation of the unknown
parameter is reduced to an averaging over the measured
values over the sensors considering AWGN assumption.
Therefore, here we focus on the consensus averaging,
and adopts the framework proposed by Xiaoet al. [5].
In this framework, consensus averaging is achieved by
mutual exchange of the information among the neighbor
sensors through multiple iterations and updating the data
at each sensor according to a weighted sum of the
received data. By appropriate choice of weights and after
large enough iterations, the sensors’ data will converge
to the average of initial measurements of all sensors. The
main advantage of such a scheme is to avoid multi-hop
transmissions.

According to [5], each sensor updates its data as
following:

xi(t + 1) = Wiixi(t) +
∑
j∈Ni

Wijxj(t) = Wx(t) (1)

whereNi is the set of neighbors of nodei and assuming
Wij = 0 for j /∈ Ni. After t iterations we have:

x(t) = Wtx(0) (2)

where each sensor’s initial data,xi(0), is its raw mea-
surement,yi. In other words, the algorithm initializes
with xi(0) = yi.

In order to compute the average ofx(0) elements, the
necessary condition for mis-adjustment free convergence
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is:
lim
t→∞

Wt =
1
n
11T (3)

So far, several weights have been proposed. Two famous
and simple ones are Maximum-degree and Metropolis
[5]. Metropolis weight matrix is defined as:

Wij =


1

1+max{|Ni|,|Nj |} j ∈ Ni

1−
∑

i,k∈Ni
Wik i = j

0 otherwise.
(4)

According to the above weights,1 can be interpreted as
a fusion scheme in which each node spatially updates its
data according to the difference between its own and the
neighbors’ data.

Since the degree of each node depends on its relative
position to other sensors, the rate of convergence will
vary widely over the network. The higher the degree
of a node, the more precise would be the estimation
of unknown parameter in each iteration and hence the
larger will be the rate of convergence. Based on the
above discussion, some nodes will suffer from slow
convergence and consequently large final error after a
certain number of iterations due to low connectivity
degree. We call the slow convergence effect due to these
reasons theforgotten node effect. This effect is due
to the fact that in a fusion model like this, the rate
of convergence of the nodes depend on the amount of
interactions they can have with the network in a certain
amount of time. In the case of lowly connected nodes,
low convergence rate stems from little number of options
the node has for interaction to the network, i.e. little
number of neighbors or low connectivity degree.

This paper presents a new method for updating sensor
estimations in a spatio-temporal manner to improve not
only the overall convergence rate, but also eliminate
the forgotten node effect. In other words, our scheme
improves overall convergence rate and at the same time
reduces error variance among the nodes. This is achieved
by updating each sensors’ weights through time. We have
formulated our method according to the adaptive filter
theory concepts and adopted a least mean square (LMS)
analysis to analytically derive convergence conditions.

The paper is organized as follows: in section II we
formulate adaptive consensus averaging problem and
derive its convergence conditions. Simulation results are
discussed in section III. Section IV presents our future
work and concluding remarks.

II. A DAPTIVE CONSENSUS

A. Adaptive Model

In order to resolve the effect of low connectivity de-
gree on convergence behavior, we propose a method for

temporally updating the averaging weights of each node.
This can be interpreted according to the adaptive filter
concept as well, where we model each node estimation
or data as the output of an adaptive filter whose input is
the difference between its current estimation and current
estimation of its neighbors.

Consider nodei with |Ni| neighbors; the temporally
adaptive updating equation can be formulated based on
1 as:

xi(t + 1) = Wii(t)xi(t) +
∑
j∈Ni

Wij(t)xj(t) (5)

= xi(t) +
∑
j∈Ni

Wij(t)(xj(t)− xi(t)) (6)

assuming that
∑

j Wij = 1. According to6, we establish
a virtual adaptive filter for each node that relates the
difference betweenxi(t+1) andxi(t) by a time adaptive
weighted sum of differences of the current data of nodei
and its neighbors’ data. This filter has|Ni| taps, each of
which corresponds to one the neighbor of nodei whose
input data isxj(t)− xi(t) for j ∈ Ni.

Now definingx′i or simply x′ as the vector of data
from neighbors of nodei. The desired signal,xdi(t), is
defined as:

xdi(t) =
1

|Ni|+ 1
(
xi(t) + 1Tx′(t)

)
(7)

The desired signal defined here is an approximate of
the actual desired signal which is the average of all the
sensors’ data. This is the best available estimate of the
ultimate average since only neighbors’ data is available
to each node. et,xdi(t) is an unbiased estimation of the
actual desired signal since ifxi(t+1) equalsxdi(t) and
analogously to the average of its neighbors’ data, the
algorithm has converged.

B. Adaptive Consensus Algorithm

In the adaptive consensus, the objective is to minimize
the difference betweenxi(t + 1) andxdi(t) which char-
acterizes the error perceived nodei at timet. Therefore,
considering6 we have:

ei(t) = xdi(t)− xi(t + 1) (8)

=
1

|Ni|+ 1
(
xi(t) + 1Tx′(t)

)
− xi(t)

−WT
i (t)[x′(t)− xi(t)1] (9)

and the cost function to minimize will be:

Ji = E{e2
i (t)} (10)

By taking the gradient ofJi , we have:

∇Ji = −2E{ei(t)[x′(t)− xi(t)1]} (11)
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Equation11 can be used in updating weights based on
steepest descent method:

Wi(t + 1) = Wi(t) + µiE{ei(t)[x′(t)− xi(t)1]} (12)

where µi is the step size parameter for nodei. Equa-
tion 12 requires knowledge of expected value ofx(t);
however, each sensor is only aware of its own and the
neighbors’ data. By using the concept of stochastic gra-
dient, we can replace the termE{ei(t)[x′(t)− xi(t)1]}
with its instantaneous value,ei(t)[x′(t)−xi(t)1], similar
to LMS type algorithms. Consequently:

Wi(t + 1) = Wi(t) + µiei(t)[x′(t)− xi(t)1] (13)

Algorithm 1 presents how13 is realized on each node.

Algorithm Adaptive Consensus Averaging
Initialization

xi(0)← yi

Main Loop
While t < max iteration AND status 6=converged

xi(t + 1)← xi(t) + WT
i (t)[x′(t)− xi(t)1]

xdi(t)← 1
|Ni|+1

�
xi(t) + 1T x′(t)

�

ei(t)← xdi(t)− xi(t + 1)
Wi(t + 1)←Wi(t) + µiei(t)[x

′(t)− xi(t)1]
end while
end
Algorithm 1. Adaptive Consensus Averaging

It must be noted that the main role of adaptive consen-
sus scheme introduced here is improving the convergence
by adapting the weights through time. Nevertheless,
proper choice of the initial weights affects the con-
vergence properties as well. For example, one can use
adaptive consensus in conjunction with Metropolis initial
weights to form an adaptive Metropolis scheme.

C. Proof of Convergence

In this section, we determine the range of step-size
for which the convergence of13 is guaranteed. First, we
determine the range of step-size for a scenario in which
only nodei updates its data using proposed scheme and
all other nodes use constant weights.

Theorem 1:If the step size parameter is selected so
that

0 < µi <
2

σ2
x(|Ni|+ 1)

(14)

holds, then a network with only nodei updating adap-
tively according to13, will converge in the mean. In the
above equation,σ2

x is the variance of the input signal.
Proof: for a conventional LMS algorithm to con-

verge in the mean, the step-size parameter should satisfy
[6]:

0 < µi <
2

λmax
(15)

where λmax is the maximum eigenvalue ofR =
[rij ]|Ni|×|Ni|, which is the correlation matrix of the input
data defined as:

R = E{[x′(t)− xi(t)1][x′(t)− xi(t)1]T } (16)

It can be shown that:

R = σ2
x(11T + I) (17)

whereI is the unit matrix. It can be shown that the largest
eigenvalue ofR is given by:

λ = σ2
x(|Ni|+ 1) (18)

Hence we conclude that for the above LMS to converge
in the mean, the following condition should hold:

0 < µi <
2

σ2
x(|Ni|+ 1)

(19)

Although theorem 1 provides a range forµi that guar-
antees the convergence in the mean, as stated in [6],
to achieve convergence in strict sense, the upper bound
given in 19 should be restricted to 1

|Ni| of its value.
Therefore, the strict sense convergence condition is:

0 < µi <
2

σ2
x|Ni|(|Ni|+ 1)

(20)

It should be noted that although limiting the step-size
to upper bound of equation20, will lead to convergence,
as it is shown in the next section, in order to have
better performance compared to the constant weights,
we should set the step-size parameter to about one order
of magnitude less than upper bound given in20.

III. S IMULATION RESULTS AND ANALYSIS

In this section, the performance of the adaptive
consensus scheme is analyzed through simulation and
compared with its static counterpart. We considered a
network of100 randomly placed nodes over[0, 1]×[0, 1]
field. In order to study the effect of average connectivity
degree, we study the results for various range of sights
(RoS), D, which defines the range below which nodes
are considered connected. Mean Square Error (MSE) for
D = 0.15, 0.2 and 0.25 are analyzed here. Each sensor
takes a scalar noisy measurementyi = θ + νi, whereθ
is unknown parameter andνis are AWGN samples with
distributionN(0, σ2).

Figure1(a)-(c) show the simulation results for various
D. For a specificD, each figure depicts the average mean
square error behavior versus time, that is, the average
error over all the nodes is depicted. Results for adaptive
consensus with Metropolis initial weights, i.e. adaptive
Metropolis, are presented here. To give a comparative
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(a) D = 0.25
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(b) D = 0.2
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(c) D = 0.15

Fig. 1. Average MSE vs. iteration for various range of sights;D = 0.25, 0.2, 0.15

sense, we studied static Metropolis weights as well. It
must be noted that the essence of adaptive consensus is
its spatio-temporal updating method, hence, the initial
weights can be freely chosen saving that they do not
result in divergence of the algorithm, that is adaptive
max-degree scheme can be derived similarly. However,
proper choice of the initial weights, which corresponds to
the weights for only spatial updating has a great impact
on the convergence behavior of the system.

We study the performance of improvements of our
proposed method in terms of average error and error
variance over the network. TableI and II presents
average error and error variance respectively over the
network after80 iterations for variousD in dB for both
Metropolis and adaptive Metropolis methods as well as
their ratio. According to tableII , adaptive Metropolis has
fairly lower error variance in comparison with its static
counterpart. This means that the error perceived by each
node error does not differ greatly over the network and
therefore, the forgotten node effects which stems from
low connectivity degree will not be crucial in adaptive
consensus method.

TABLE I

AVERAGE FINAL ERROR AFTER80 ITERATIONS (dB).

D Metropolis Adaptive Metropolis Ratio
0.15 −37.7193 −43.6313 5.9119
0.2 −46.9184 −57.2002 10.2818
0.25 −68.1872 −71.0293 2.8421

TABLE II

VARIANCE OF FINAL SQUARE ERROR AFTER80 ITERATIONS (dB).

D Metropolis Adaptive Metropolis Ratio
0.15 −76.4316 −89.2097 12.7781
0.2 −97.4774 −116.0034 18.5260
0.25 −142.1162 −175.1353 33.0191

IV. CONCLUSION AND FUTURE WORK

This paper introduced the adaptive consensus scheme,
an adaptive method to improve convergence behavior of
distributed consensus averaging methods. The proposed
scheme not only improves the convergence rate, but also
the variance of the error over the network. This result is
achieved by introducing time adaptive weights which are
derived through an LMS analysis. We are considering
a more detail analysis of the convergence behavior of
the adaptive consensus scheme as well as the effect of
mobility on the convergence rate for our future work.
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