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Abstract—This paper introduces adaptive consensus, a randomly distributed nodes over an area. We assume that
spatio-temporal adaptive method to improve convergence each sensor takes a noisy measurement of the unknown
behavior of the current consensus fusion schemes. Thisparameter, corrupted by additive white gaussian noise
is achieved by introducing a time adaptive weighting (AWGN). In a centralized fusion scheme in sensor net-
method for updating each sensor data in each iteration, works, each sensor sends its measurement to a center to
Adaptive consensus method will improve node convergence . - . .
rate, average convergence rate and the variance of error extract the maximum likelihood estimation of unknown
over the network. A mathematical formulation of the Parameter from aggregate measurements of the sensors.
method according to the adaptive filter theory as well as This scheme suffers from communication overheads. In
derivation of the time adaptive weights and convergence a distributed fusion scheme in sensor networks, however,
conditions are presented. The analytical results are verified using its own and its neighbors’ measurements, each
by simulation as well. sensor calculates a local estimation of the unknown para-

meter which iteratively converges to the intended result.
|. INTRODUCTION The maximum likelihood estimation of the unknown

Sensor networks have recently received much attentiparameter is reduced to an averaging over the measured
due to their high potential of the formation of thevalues over the sensors considering AWGN assumption.
next generation information gathering and processifiderefore, here we focus on the consensus averaging,
systems. The main focus of this paper is on a spand adopts the framework proposed by Xigtoal. [5].
cific method of distributed sensor fusion for unknowin this framework, consensus averaging is achieved by
parameter estimation called consensus averaging, andtual exchange of the information among the neighbor
proposes a new spatio-temporal algorithm to improve tgensors through multiple iterations and updating the data
convergence behavior of previously proposed methodst each sensor according to a weighted sum of the

Many schemes for distributed data fusion over sens@ceived data. By appropriate choice of weights and after
networks have been proposed. One simple methodlasge enough iterations, the sensors’ data will converge
flooding which requires a large amount of data commtn the average of initial measurements of all sensors. The
nication, storage memory and book-keeping overheadain advantage of such a scheme is to avoid multi-hop
Several sophisticated approaches have also been pransmissions.
posed in the context of decentralized detection for aAccording to [5], each sensor updates its data as
network of mobile agents [1]. Recently, a new class &6llowing:
distributed data fusion is proposed which is used in coor-
dination of agents in a network as well as realization of it + 1) = Wiz(t) + > Wijz;(t) = Wx(t) (1)
distributed Kalman filters [2]. The problem of distributed JEN;
consensur agreementamong nodes belongs to thig,pere v s the set of neighbors of nodeand assuming
clas_s of pr_oblems [3] [4]. Xia@t al. [5] ha\{e prpposed Wi; = 0 for j ¢ N;. After ¢ iterations we have:

a simple iterative method for data fusion in sensor

networks based on average consensus, and have applied x(t) = Wx(0) 2)

it to the problem of unknown parameter estimation in

the wireless sensor networks. Since the aforementiongblere each sensor’s initial data;(0), is its raw mea-
method deals only with single-hop transmission, it avoidsirement,y;. In other words, the algorithm initializes
many overheads incurred in most distributed schemesvith x;(0) = v;.

We consider the problem of unknown parameter es-In order to compute the averagexf0) elements, the
timation using a sensor network that consists rof necessary condition for mis-adjustment free convergence



is: 1 temporally updating the averaging weights of each node.
lim Wt = =117 (3) This can be interpreted according to the adaptive filter

f=oo n concept as well, where we model each node estimation

So far, several weights have been proposed. Two fam@ySyata as the output of an adaptive filter whose input is

and simple ones are Maximum-degree and Metropoligs difference between its current estimation and current
[5]. Metropolis weight matrix is defined as: estimation of its neighbors.

MmN TN J € N; Consider node with |NV;| neighbors; the temporally

Wij =12 1= sy Wik i=j (4) adaptive updating equation can be formulated based on
0 S otherwise. 1as:
According to the above weight,can be interpreted as ~ zi(t+1) = Wi(t)zi(t)+ > Wi(t)z;(t)  (5)
a fusion scheme in which each node spatially updates its JEN;
dafta according to the difference between its own and the = zi(t) + Z Wij(t)(x;(t) — 2i(t)) (6)
neighbors’ data. JEN:

Since the degree of each node depends on its relative

position to other sensors, the rate of convergence Wqﬁsummg than Wi; = 1. According 106, we establish

. . a virtual adaptive filterfor each node that relates the

vary widely over the network. The higher the degre&'ﬁerence betweem;(t+1) andz:(#) by a time adaptive

of a node, the more precise would be the estimation . . ) zi(t) by b ,
. . , Welghted sum of differences of the current data of nbde

of unknown parameter in each iteration and hence the °. . . o

. and its neighbors’ data. This filter ha¥;| taps, each of
larger will be the rate of convergence. Based on th%i h corr nds to one the neiahbor of node
above discussion, some nodes will suffer from slow ch corresponds to oné the Neighbor ot Nearnose

, Input data isz;(t) — z;(t) for j € N;.
convergence and consequently large final error after %\I I , : )
ow definingx; or simply x’ as the vector of data

certain number of iterations due to low connectivit¥ ) . . . .
rom neighbors of nodé. The desired signaky;(t), is
degree. We call the slow convergence effect due to thedsegﬁned as:
reasons theforgotten node effectThis effect is due '
to the fact that in a fusion model like this, the rate xqi(t) -
of convergence of the nodes depend on the amount of [Nil +1
interactions they can have with the network in a certain The desired signal defined here is an approximate of
amount of time. In the case of lowly connected nodethe actual desired signal which is the average of all the
low convergence rate stems from little number of optiorsensors’ data. This is the best available estimate of the
the node has for interaction to the network, i.e. littlaltimate average since only neighbors’ data is available
number of neighbors or low connectivity degree. to each node. et;4; () is an unbiased estimation of the
This paper presents a new method for updating sensatual desired signal since:f (¢ + 1) equalszy;(t) and
estimations in a spatio-temporal manner to improve nahalogously to the average of its neighbors’ data, the
only the overall convergence rate, but also eliminatdgorithm has converged.
the forgotten node effect. In other words, our scheme
improves Ovel’all Convel’gence rate and at the same tl@eAdapUVe Consensus Algonthm
reduces error variance among the nodes. This is achieveg : L L
. oS : n the adaptive consensus, the objective is to minimize
by updating each sensors’ weights through time. We hatY]e . .
. .. the difference betweemn;(t + 1) and x4 (¢) which char-
formulated our method according to the adaptive filter_, . . , .
erizes the error perceived nodat timet. Therefore,
theory concepts and adopted a least mean square (Ll\?g

. ) . I onsideringé we have:
analysis to analytically derive convergence conditions.

1 (z:(t) +17X'(1) (D)

The paper is organized as follows: in section Il we  e;(t) = xg(t) —zi(t+1) (8)
formulate adaptive consensus averaging problem and B 1 T
derive its convergence conditions. Simulation results are = 7‘Ni| 1 (xi(t) +1°x (t)) — x;(t)
discussed in section lll. Section IV presents our future _WiT(t)[X/(t) — (1] )

work and concluding remarks.
and the cost function to minimize will be:

1. ADAPTIVE CONSENSUS Ji = E{e2(t)} (10)

A. Adaptive Model By aki ) g . v
In order to resolve the effect of low connectivity de- y taking the gradient of; , we have:

gree on convergence behavior, we propose a method for VJ; = —2E{e;(t)[x'(t) — z;(t)1]} (11)



Equation11 can be used in updating weights based amhere \... is the maximum eigenvalue oR =
steepest descent method: [7i5]| N, |x || » Which is the correlation matrix of the input

, data defined as:
Wi(t + 1) = Wz(t) + /LZ‘E{ei(t) [X (t) — a;z(t)l]} (12)
. . R = B{[x(t) - z:()1[xX'(t) - :(1)1]"}  (16)

where u; is the step size parameter for nodeEqua-
tion 12 requires knowledge of expected value xft); It can be shown that:
however, each sensor is only aware of its own and the R =02(117 + 1) (17)
neighbors’ data. By using the concept of stochastic gra-
dient, we can replace the terf{e;(t)[x'(t) — z;(t)1]} wherel is the unit matrix. It can be shown that the largest
with its instantaneous value;(t)[x'(t) —x;(t)1], similar ~eigenvalue ofR is given by:
to LMS type algorithms. Consequently: A= o2(|N;| + 1) (18)

Wit +1) = Wi(t) + miei(t)[x (1) —z:(1)1] (13)  Hence we conclude that for the above LMS to converge
Algorithm 1 presents how3 is realized on each node. In the mean, the following condition should hold:

. . . 2

Algorithm Adaptive Consensus Averaging 0< 1) < ——— 19

Initialization Hi a2(|N;| + 1) (19)

Main Loop .

While t < max.teration AND status converged Although theorem 1 provides a range foy that guar-
xi(t 4 1) — x:(t) + WT ()[x'(t) — 2:(t)1] antees the convergence in the mean, as stated in [6],
wd(i()t) - W (ﬂcz‘((t) +)1TX’(t)) to achieve convergence in strict sense, the upper bound
ei(t) «— zai(t) —zi(t +1 i i ; 1 i
Wit + 1) e Wlt) 4 e (D) (6) — 2(0)1] given in 19 should be restricted tox of its value.

end while Therefore, the strict sense convergence condition is:

end
Algorithm 1. Adaptive Consensus Averaging 0<p; <

_ | NN+ 1) 29
It must be noted that the main role of adaptive consen-; g4 be noted that although limiting the step-size

sus scheme introduced here is improving the convergergg%pper bound of equatic®0, will lead to convergence,

by adapting the weights through time. Neverthelesss it is shown in the next section, in order to have

proper choice of the initial weights affects the COMsetier performance compared to the constant weights,

vergence properties as well. For example, one can yse shoyid set the step-size parameter to about one order

adaptive consensus in conjunction with Metropolis initigs magnitude less than upper bound giver2
weights to form an adaptive Metropolis scheme.

[11. SIMULATION RESULTS AND ANALYSIS

C. Proof of Convergence In this section, the performance of the adaptive
In this section, we determine the range of step-sizensensus scheme is analyzed through simulation and

for which the convergence df3 is guaranteed. First, wecompared with its static counterpart. We considered a

determine the range of step-size for a scenario in whigetwork of100 randomly placed nodes oV, 1] x [0, 1]

only nodei updates its data using proposed scheme afield. In order to study the effect of average connectivity

all other nodes use constant weights. degree, we study the results for various range of sights
Theorem 1:1f the step size parameter is selected d&R0S), D, which defines the range below which nodes
that are considered connected. Mean Square Error (MSE) for
0< i < 2 (14) D =0.15,0.2 and0.25 are analyzed here. Each sensor
o2(|N:i| +1) takes a scalar noisy measurement= 6 + v;, whered

holds, then a network with only nodeupdating adap- 'S Unknown parameter angs are AWGN samples with

tively according tol3, will converge in the mean. In thedistribution N'(0, o). _ _ '

above equationg? is the variance of the input signal. Flgurel(a)—_(c_) show th(_e S|mulat|9n results for various
Proof: for a conventional LMS algorithm to con-D- For aspecifid), each figure depicts the average mean

verge in the mean, the step-size parameter should satRfi/are error behavior versus time, that is, the average
[6]: erfor over all the nodes is depicted. Results for adaptive

consensus with Metropolis initial weights, i.e. adaptive
(15) Metropolis, are presented here. To give a comparative

0< <

)\rnax
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Fig. 1. Average MSE vs. iteration for various range of sighfs= 0.25,0.2,0.15

sense, we studied static Metropolis weights as well. It IV. CONCLUSION AND FUTURE WORK

must be noted that the essence of adaptive consensus igjs paper introduced the adaptive consensus scheme,
its spatio-temporal updating method, hence, the initigh agaptive method to improve convergence behavior of
weights can be freely chosen saving that they do ngktriputed consensus averaging methods. The proposed
result in divergence of the algorithm, that is adaptiVvecheme not only improves the convergence rate, but also
max-degree scheme can be derived similarly. Howeveie variance of the error over the network. This result is
proper choice of the initial weights, which corresponds tg-hieved by introducing time adaptive weights which are
the weights for only spatial updating has a great impaggrived through an LMS analysis. We are considering
on the convergence behavior of the system. a more detail analysis of the convergence behavior of
We study the performance of improvements of ouhe adaptive consensus scheme as well as the effect of
proposed method in terms of average error and ermpbility on the convergence rate for our future work.
variance over the network. Table and Il presents
average error and error variance respectively over the ACKNOWLEDGMENTS
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