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Abstract. The research community has witnessed a large interest in
monitoring large scale distributed systems. In these applications typi-
cally we wish to monitor a global system condition which is defined as
a function of local network elements parameters. In this paper, we ad-
dress Aggregate Threshold Queries in sensor networks, which are used
to detect when an aggregate value of all sensor measurements crosses a
predetermined threshold. The major constraint in designing monitoring
applications is reducing the amount of communication burden which is
the dominant factor of energy drain in wireless sensor networks. In this
study, we address the aggregate threshold monitoring problem by propos-
ing a distributed algorithm to set local thresholds on each sensor node
so as to minimize the probability of global polling. We adopt the FPTAS
optimization formulation of the problem [2] and propose a distributed
algorithm as the solution to the problem. Simulation results demonstrate
the validity of the proposed distributed algorithm in attaining very close
performance as the centralized schema.

1 Introduction

In recent years, with the abundance of emerging large scale distributed systems
such as sensor networks, and peer to peer networks, monitoring scenarios is pro-
gressively more considered vital to track these systems. In monitoring either we
are interested in supervising the network itself (e.g. traffic engineering, routing
optimization, anomaly detection in data networks), or environment that net-
work deployed in it (e.g. wildlife behavior, moving objects in sensor networks).
Network monitoring includes measuring system parameters to react to different
network conditions. There are two ways of getting knowledge from the network;
the first is to send requests into the network to poll all relevant information.
Another option is that all network elements push all possibly important read-
ings to the management station. The nature of network monitoring applications
imposes specific requirements on design of monitoring algorithm: 1- the algo-
rithm should provide real time detection of noteworthy events 2- The algorithm
must be scalable to large number of nodes. 3- The detection process should incur
minimum communication in the network. This is a very critical requirement in
sensor networks, because communication is the primary source of energy con-
sumption in these networks. Sensors are powered by batteries and replacing these



if not impossible is usually cumbersome. It is also important in wired networks.
In these Networks, the monitoring application should not hamper the normal
operation of the network. Thereby, a challenge in monitoring applications is to
devise plans to reduce communication while fulfilling application requirements.
A common method is to install local constraints or filters at remote sources to
filter out unnecessary updates. Local constraints should have the property such
that preserving all of them ensures that there was not any anomalous event.
Each new measurement is compared to the filter and in case it violates (exits)
the corresponding range of the filter an update is sent to the base station. Ap-
parently efficient decomposition of global system constraint into local constraint
has a great impact on reducing communication. Filter setting is dependent on
a number of parameters including the associated cost with sending an update
from each node to the management station and the changing patterns of mea-
surements. Often the monitoring task is the need to detect when a function of
individual network element readings crosses a given threshold. Typically, mon-
itored functions are aggregate functions like SUM, or AVG which gives global
insights concerning the state of the network. These functions are specially impor-
tant in sensor networks where individual sensor readings are inherently unreliable
and don’t convey much information. Consider the following queries:

– Report when the number of enemy troops detected in a region of the network
crosses 20.

– Report when variance of temperature in a building crosses 3.

Aggregate functions like SUM, AVG are linear functions of individual sensor
readings, thus the global property of

∑
iAiTi ≤ T can be decomposed to a set of

Xi ≤ Ti constraints which checked locally at each node. In this work, we concen-
trate on the problem of determining optimal values fo Ti’s. Previous works [2]
[18] assume that the monitoring station computes the optimal thresholds based
on individual nodes probability distribution functions and assigns thresholds for
nodes. Thus each node should update its histogram constructed over recent mea-
surements either periodically or based on a change detection algorithm to the
base station. But there is limitation on the applicability of such an approach for
sensor networks. The structure of such networks has necessitated the design of
asynchronous, distributed and fault-tolerant computation and information ex-
change algorithms [5].

This is mainly because of sensor networks operational constraints: (i) the
network topology may not be completely known to the nodes of the network, (ii)
nodes may join or leave the network (even expire), so that the network topology
itself may change. These issues specially occurs in mobile sensor networks. In
this work, we propose a distributed algorithm for optimal threshold assignment
so as to minimize the probability of global system polling.

The remainder of the paper is organized as follows: Section 2 reviews related
works. Section 3 defines the system model and problem definition. Section 4
provides the optimal solution for the threshold assignment problem. Section 5
presents a distributed threshold assignment algorithm based on the problem’s



optimal solution. Section 6 validates experimental evaluation of the proposed
method. Finally section 7 concludes the study.

2 Related Works

In recent years, continuous query processing for monitoring distributed data
streams has attracted much research. Different query types have been mentioned
in this environment includes top-k[3], quantiles[7], joins[6]. Monitoring aggregate
threshold queries in networks initially mentioned by the pioneering work of Raz
et. al [12]. They introduced installing local mathematical constraints at remote
sites and present a simple approach for threshold assignment assuming uniform
data distributions of system variables. Olston et. al [18] suggested an adaptive
filter based approach for tracking error bounded values of aggregate functions.
According to the precision specified in continuous query filters are assigned for
local values of data objects. Keralpera et. al[16] presented several algorithm for
static and adaptive threshold setting for monitoring thresholded counts queries
and analyzed the communication complexity of each algorithm. Sharfman et
al[20] introduced a geometric approach for monitoring arbitrary threshold func-
tions. Recent work of kashyap et al[14] considers the problem of non-zero slack
threshold assignment which adaptively dedicate fraction of total threshold to
monitoring node to absorb small local threshold crossing that eliminate the need
to global system polling. All the above works assume centralized threshold com-
putation and assignment but in this paper we propose a distributed algorithm
for optimal threshold setting.

3 System Model and Problem Formulation

We assume that there is a base station being responsible for monitoring the
network. The base station disseminates queries to sensors and responds to user
queries. Each sensor node i continuously reads the requested local phenomenon
xi which is in the range [0,Mi] at a fixed sampling rate. Amongst the local
phenomenon are temperature, humidity, light, etc. The measured values of all
sensors can be represented in a vector of values x = (xi, i = 1..n).

The goal is to detect when the aggregate value of all the measurements∑n
i=1Aixi crosses a predetermined threshold T . A common method to reduce

communication is to install local constraints or filters (in the form of an interval
Ii = [0, Ti]) at remote sources. Local constraints setting should maintain the
property that preserving all of them, ensures that the aggregate value has not
exceeded the threshold (covering property). Each sensor i after measuring the
new value of xi, checks condition Li ≡ (xi ∈ [0, Ti]), and the condition upon
being violated, an update is sent to the base station to initiate global aggregate
computation. Using such a method, vast amount of updates are filtered out
at the source and are not transmitted to the base station. The efficiency of
this approach is largely dependent on filter setting method. But what values
should we choose for Ti’s? Selection of values must satisfy the global property



∑n
i=1AiTi ≤ T to conform covering property. However, this equation leads to

great flexibility in choosing Ti’s. In this respect, we face to another question:
what is the best selection?

We aim at maximizing the communication cost via minimizing the prob-
ability of global polling. Every local filter violation leads to global computa-
tion, thus we should maximize the probability of preserving all local constraints
maxF (x1 ≤ T1, . . . , xn ≤ Tn), where F is the joint cumulative frequency dis-
tribution over all the sensors. Computing the multi-dimensional histograms is
somewhat cumbersome in terms of communication burden, and hence we con-
sider more communication convenient assumption of independence between sen-
sor’s data distributions. With this simplifying assumption, we come up to the
optimization problem

max
T

n∏
i=1

Fi(Ti) (1)

subject to:
n∑
i=1

AiTi ≤ T (2)

where T = (Ti, i = 1..n) is the vector of local thresholds. It has been proven
that local threshold selection problem is NP-hard [2] wherein the authors have
introduced a centralized scheme, referred to as FPTAS. This centralized scheme
was used to solve the problem within ε relative error for arbitrarily small ε. The
solution was based on the assumption that all the values of Fi(Ti) are integral
powers of a constant α, which is assumed to be slightly greater than 1. Thus,
each Fi(Ti) will correspond to some αri and maximizing

∏n
i=1 Fi(Ti) will be

equivalent to maximizing α
∑
ri . If Ti(r) denotes the local threshold value such

that
αri ≤ Fi(Ti(ri)) < αri+1 (3)

the problem becomes

max
r

n∑
i=1

ri (4)

subject to:
n∑
i=1

AiTi(ri) ≤ T (5)

where r = (ri, i = 1..n) is the vector representation of powers.
This problem is a variant of knapsack problem that can be solved using

dynamic programming.
In order for (4) to admit a unique maximizer, Fi must satisfy the following

assumptions:

A1: Fi is positive, strictly increasing and twice-continuously differentiable.
A2: Fi is log-concave, i.e. logFi is a concave function.

Indeed, we assume that optimization variable, r, belongs to a domain in
which Fi satisfies the abovementioned assumptions.



4 Optimal Solution

In this section, we solve problem (4). Problem (4) is a constrained problem,
whose constraint (5) is coupled across the network. Such a constrained opti-
mization problem can be efficiently solved using Interior Point Method [5], which
necessitates the coordination among possibly all nodes of the networks, which is
undesirable or infeasible. However, in the context of wireless ad-hoc and sensor
networks, we are interested in distributive algorithms to solve (4).

Towards this end, we aim at solving the problem (4) through its dual. In
the sequel, we proceed to derive the dual problem of (4) and then present a
distributively iterative algorithm as the solution to the dual problem.

We start by writing the Lagrangian of problem (4), as follows

L(r, µ) =
n∑
i=1

ri − µ

(
n∑
i=1

AiTi(ri)− T

)
(6)

where µ > 0 is the Lagrange multiplier associated with constraint (5). Using
Karush-Kuhn-Tucker (KKT) conditions for convex optimization, to find optimal
powers r∗, we should find the stationary points of the Lagrangian and satisfy
complementary slackness conditions. The complementary slackness conditions
for optimal primal variable r∗ and dual variable µ∗, are

µ∗ ≥ 0; (7)
n∑
i=1

AiTi(r∗i ) ≤ T ; (8)

µ∗

(
n∑
i=1

AiTi(r∗i )− T

)
= 0 (9)

In order to find the stationary points of the Lagrangian, we solve

∇L(r∗, µ∗) = 0 (10)

where 0 is a vector with all zero. For the ith element of (10) we have

∂L

∂ri
= 1− µAi

dTi(ri)
dri

(11)

From (3), recall that Ti(ri) is selected so that αri ≤ Fi(Ti(ri)) < αri+1, also,
recall that α is a constant slightly greater than 1. Therefore, the lower and
upper bounds of Fi(Ti(ri)) are sufficiently close to each other, leading us to
approximate Fi(Ti(ri)), using the concept of geometric mean as following:

Fi(Ti(ri)) ≈
√
αriαri+1

≈
√
ααri (12)

Such an approximation would also be done through the concept of average mean,
which for α = 1 + δ, δ → 0 gives the same results, as in (12).



Recalling the monotonicity assumption of Fi, it admits a unique inverse,
which yields the explicit expression for Ti as

Ti(ri) = F−1
i (αri

√
α) (13)

Substituting (13) in (11), yields

∂L

∂ri
= 1− µAi

dF−1
i

dri

(
αri
√
α
)

(14)

= 1− µAi
d

dri

(
αri
√
α
) dF−1

i

dri

∣∣∣∣
αri
√
α

= 1− µAiαri
√
α lnα

dF−1
i

dri

∣∣∣∣
αri
√
α

(15)

Setting (15) to zero and doing some algebraic manipulation, gives an explicit
expression for the optimal exponent r∗, in terms of optimal Lagrange multiplier
µ∗ and other network parameters. For the sake of presentation, we define

Gi(z) =
dF−1

i

dri

∣∣∣∣
z

(16)

Substituting Gi(.) in (15), we come up to the following implicit equation to
obtain r∗

αr
∗
i Gi(αr

∗
i
√
α) =

1
µ∗Ai lnα

√
α

(17)

In order to solve problem (4) through its dual, we need to obtain the Lagrange
dual function, or simply dual function. The Lagrange dual function D(µ) is
defined as the maximum of the Lagrangian L(r, µ) over the primal variable r,
for a given µ. Thus, D(µ) can be expressed as

D(µ) = max
r
L(r, µ) (18)

Based on the results of the KKT condition mentioned above, maximization in
(18) is already solved with r∗ given by (17), which results in

D(µ) = L(r∗, µ) (19)

The dual problem is formulated as

min
µ
D(µ) ≡ min

µ
L(r∗, µ) (20)

subject to:
µ ≥ 0 (21)

Dual problem defined above can be solved using iterative methods. In order to
obtain a distributed algorithm, we solve the dual problem (20) using Gradient
Projection Method. To solve the dual problem, Gradient Projection Method



adjusts µ in opposite direction to the Gradient of dual function, i.e. ∇D(µ).
Precisely speaking, in the kth iteration step, µ(k) is updated as follows

µ(k+1) =
[
µ(k) − γ dD(µ(k))

dµ

]+
(22)

where [z]+ = max{z, 0} and γ is a sufficiently small constant step size. Using
the Danskin’s Theorem [4], the derivative of D(µ) is given by

dD(µ)
dµ

= T −
n∑
i=1

AiTi(ri) (23)

Substituting (23) in (22), yields

µ(k+1) =
[
µ(k) + γ

(
n∑
i=1

AiTi(r
(k)
i )− T

)]+
(24)

where r(k)i is the solution to (17) for a given µ(k). In this equation, γ is chosen
sufficiently small so as to guarantee the convergence.

In the economics literature, Lagrange multiplier or dual variable, µ is called
shadow price [15] and accordingly, (24) is called shadow price update. This stems
from the interpretation of its role in solving the primal problem via its dual.
From (17) it’s apparent that r∗ is a decreasing function of µ; therefore µ can be
construed as the price which must be paid by node i to achieve the threshold
T(ri). As the nature of such a price is hidden to the sources from the primal
problem perspective, it is called shadow price.

(17) and (24) can be utilized as an iterative solution to problem (20) and
thereby (4). At each iteration step k, dual variable µ will be updated based on
the history of itself and the primal variables r. Then, it would be utilized by to
update primal variable r, accordingly. Therefore, after spending enough iteration
steps, primal and dual variables tends to primal-optimal r∗ and dual-optimal µ∗,
respectively.

Based on the above iterative solution, we propose a distributed algorithm
as a solution to threshold selection problem. We deffer the algorithm until the
Section 5.

5 Distributed Threshold Assignment Algorithm

In this section, we propose a distributed algorithm based on the iterative so-
lutions obtained in Section 4. Considering (24) and (17), it is clear that the
iterative solution to problem (4) can be regarded as a distributed algorithm.

The algorithm is devised by directly utilizing the update equation (17) and
(17), over the network. Clearly, for µ to be updated using (24), the knowledge
about the evolution of all nodes in the network is required. Although the nature
of solution is distributive, this is a global information of the network and can be
elaborated using well-known algorithms such as Flooding, etc.



In particular, each sensor i in the iteration step k benefits from all other
nodes’ current power r−i’s, thanks to Flooding-like algorithms, to update the
current shadow price µ(k). Since all other nodes have access to such information
too, they will obtain the same value for µ(k+1) and therefore, we don’t introduce
additional notation to distinguish between the realized update process.

Upon updating µ(k), each sensor i calculates its power ri, accordingly. The
above rule will proceed until reaching some predefined notions of convergence.

We will refer to this algorithm as DTA. The DTA Algorithm is stated below.

DTA Distributed Threshold Assignment Algorithm

Initialization
Initialize Ais and T ∀i = 1..n.

Main Loop

Do until maxi |r(k+1)
i − r(k)i | < ε

1. t each sensor node, update the shadow price as following:

µ(k+1) =

[
µ(k) + γ

(∑n
i=1AiTi(r

(k)
i )− T

)]+

2. Update ri according to the following equation:

αr
(k)
i Gi(α

r
(k)
i
√
α) = 1

µ
(k+1)
i Ai lnα

√
α

DTA. Distributed Threshold Assignment Algorithm

6 Experimental Evaluation

We have conducted simulation experiments to evaluate the performance of our
proposed algorithm. We verify that the algorithm, locally executed on each node,
may indeed achieve the desired global optimal threshold assignment.
In our simulation scenario, we consider a sensor network consisting of 100 sensor
nodes which randomly scattered over an area.

We assume that each node i incessantly takes measurements of a physical
phenomenon, whose CDF obeys an exponential distribution with the exponent
parameter λi. Although such a distribution may sound to be of limited interest,
it is worth mentioning that many significant real world applications might fall
within such a framework. Amongst such applications are monitoring the dwell
time of a traffic flow which pursue a Poisson distribution. The corresponding
coefficient Ai is assumed to be randomly drawn from a uniform distribution
over [0, 5]. Step size is chosen to be γ = 1.2 and the total threshold T is set to
10.
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Fig. 1. Evolution of The Assigned Thresholds Ti(ri) for Some Nodes Using DTA Al-
gorithm

The most significant issues of interest are the evolutions of primal and dual
(shadow price) variables. Evolution of assigned thresholds Tis and shadow price
µ for DTA Algorithm are depicted in Fig. 1 and 2, respectively. It is apparent
from these figures that by spending less than 300 iteration steps, convergence
was achieved and thereafter, µ and Tis had intangible variations.

7 Conclusion

There have been many studies exploring various applications of WSNs such as
monitoring. In the context of WSNs, we are interested in the design of asyn-
chronous, distributed algorithms for exchanging the information among the sen-
sor nodes. In this paper, we focused on the problem of distributed threshold
selection for aggregate threshold monitoring in WSNs. Towards this end, we
formulated threshold selection as an optimization problem that considers the
cumulative distribution function of distinct monitoring variables. The funda-
mental objective of the optimization problem was to minimize the probability
of global polling. The original problem was non-convex, thus we adopted the so
called FPTAS reformulation which was convex and has been solved using a cen-
tralized approach. We elaborated their method and solved the problem via its
dual so as to achieve a distributed solution. Our distributed solution leads to a
distributed algorithm; called DTA Algorithm which acts based on the global evo-
lution of the network information. Such information is gathered by a flooding-like
algorithm. The results extracted from the experimental evaluation was promis-
ing and demonstrated the achieved performance of the suggested algorithm are
quite comparable to the results of the centralized approach.
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